Rosenberg E et al (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7(2):e01395. https://doi.org/10.1128/mBio.01395-15
Article PubMed PubMed Central CAS Google Scholar
Adak A et al (2019) An insight into gut microbiota and its functionalities. Cellular and molecular life sciences: CMLS. 76(3):473–493. https://doi.org/10.1007/s00018-018-2943-4
Charlson FJ et al (2018) Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr Bull 44(6):1195–1203. https://doi.org/10.1093/schbul/sby058
Article PubMed PubMed Central Google Scholar
Jauhar S, London et al (2022) England) 399(10323):473–486. https://doi.org/10.1016/s0140-6736(21)01730-x
Liu X et al (2022) Life expectancy and potential years of life lost for schizophrenia in Western China. Psychiatry Res 308:114330. https://doi.org/10.1016/j.psychres.2021.114330
Veeneman RR et al (2022) Exploring the relationship between schizophrenia and cardiovascular disease: A genetic correlation and multivariable Mendelian randomization study. Schizophr Bull 48(2):463–473. https://doi.org/10.1093/schbul/sbab132
Zhao S et al (2018) 10-year CVD risk in Han Chinese Mainland patients with schizophrenia. Psychiatry Res 264:322–326. https://doi.org/10.1016/j.psychres.2018.04.020
Golofast B et al (2020) The connection between Microbiome and schizophrenia. Neurosci Biobehav Rev 108:712–731. https://doi.org/10.1016/j.neubiorev.2019.12.011
Dunphy-Doherty F et al (2018) Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain, behavior, and immunity. 68:261–273. https://doi.org/10.1016/j.bbi.2017.10.024
Nguyen TT et al (2019) Differences in gut Microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res 204:23–29. https://doi.org/10.1016/j.schres.2018.09.014
Li S et al (2020) Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 8:e9574. https://doi.org/10.7717/peerj.9574
Article PubMed PubMed Central CAS Google Scholar
Sanchez-Rodriguez E et al (2020) The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients 12(3). https://doi.org/10.3390/nu12030605
Witkowski M et al (2020) Gut microbiota and cardiovascular disease. Circul Res 127(4):553–570. https://doi.org/10.1161/circresaha.120.316242
Cryan JF et al (2019) The Microbiota-Gut-Brain axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018
Article PubMed CAS Google Scholar
Mcguinness AJ et al (2022) A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 27(4):1920–1935. https://doi.org/10.1038/s41380-022-01456-3
Article PubMed PubMed Central CAS Google Scholar
Zheng P et al (2019) The gut Microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 5(2):eaau8317. https://doi.org/10.1126/sciadv.aau8317
Article PubMed PubMed Central CAS Google Scholar
Tsamakis K et al (2022) Gut microbiome: A brief review on its role in schizophrenia and first episode of psychosis. Microorganisms 10(6). https://doi.org/10.3390/microorganisms10061121
Zhu C et al (2021) Association between abundance of haemophilus in the gut microbiota and negative symptoms of schizophrenia. Front Psychiatry 12:685910. https://doi.org/10.3389/fpsyt.2021.685910
Article PubMed PubMed Central Google Scholar
Jauhar S et al (2017) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 74(12):1206–1213. https://doi.org/10.1001/jamapsychiatry.2017.2943
Article PubMed PubMed Central Google Scholar
Howes OD et al (2024) Schizophrenia: from neurochemistry to circuits, symptoms and treatments. Nat Reviews Neurol 20(1):22–35. https://doi.org/10.1038/s41582-023-00904-0
Howes OD et al (2022) Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical Excitation-Inhibition balance. Biol Psychiatry 92(6):501–513. https://doi.org/10.1016/j.biopsych.2022.06.017
Li P et al (2016) Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem 16(29):3385–3403. https://doi.org/10.2174/1568026616666160608084834
Article PubMed PubMed Central CAS Google Scholar
Hamamah S et al (2022) Role of Microbiota-Gut-Brain axis in regulating dopaminergic signaling. Biomedicines 10(2). https://doi.org/10.3390/biomedicines10020436
Liao JF et al (2020) Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of parkinson’s disease. Brain Behav Immun 90:26–46. https://doi.org/10.1016/j.bbi.2020.07.036
Article PubMed CAS Google Scholar
Shaw W (2017) Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integrative medicine (Encinitas. Calif) 16(1):50–57
Wang Y et al (2021) Oral Berberine improves brain dopa/dopamine levels to ameliorate parkinson’s disease by regulating gut microbiota. Signal Transduct Target Therapy 6(1):77. https://doi.org/10.1038/s41392-020-00456-5
Linares DM et al (2009) Tyramine biosynthesis in Enterococcus Durans is transcriptionally regulated by the extracellular pH and tyrosine concentration. Microb Biotechnol 2(6):625–633. https://doi.org/10.1111/j.1751-7915.2009.00117.x
Article PubMed PubMed Central CAS Google Scholar
Mhanna A et al (2024) The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine 103(5):e37114. https://doi.org/10.1097/md.0000000000037114
Article PubMed CAS Google Scholar
Takeda T et al (2024) Schizophrenia and cognitive dysfunction. J Med Investig 71(34):205–209. https://doi.org/10.2152/jmi.71.205
Tu R et al (2024) Stroke and vascular cognitive impairment: the role of intestinal microbiota metabolite TMAO. CNS & neurological disorders drug targets. 23(1):102–121. https://doi.org/10.2174/1871527322666230203140805
Xu N et al (2022) Increased serum trimethylamine N-Oxide level in type 2 diabetic patients with mild cognitive impairment. Diabetes, metabolic syndrome and obesity: targets and therapy. 15:2197–2205. https://doi.org/10.2147/dmso.S370206
Erratum (2021) Trimethylamine N-Oxide, a [corrigendum]ut Microbiota-Dependent [corrigendum]etabolite, [corrigendum]s associated with frailty [corrigendum]n [corrigendum]lder adults with cardiovascular [corrigendum]isease [Corrigendum]. Clin Interv Aging 16:747. https://doi.org/10.2147/cia.S316846
Vogt NM et al (2018) The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in alzheimer’s disease. Alzheimers Res Ther 10(1):124. https://doi.org/10.1186/s13195-018-0451-2
Article PubMed PubMed Central CAS Google Scholar
Li D et al (2018) Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 17(4):e12768. https://doi.org/10.1111/acel.12768
Article PubMed PubMed Central CAS Google Scholar
Deng Y et al (2022) Higher Circulating trimethylamine N-Oxide aggravates cognitive impairment probably via downregulating hippocampal SIRT1 in vascular dementia rats. Cells 11(22). https://doi.org/10.3390/cells11223650
Kaur N et al (2023) Exploratory transcriptomic profiling reveals the role of gut microbiota in vascular dementia. Int J Mol Sci 24(9). https://doi.org/10.3390/ijms24098091
Hu X et al (2023) TMAO promotes dementia progression by mediating the PI3K/Akt/mTOR pathway. Tissue Cell 81:102034. https://doi.org/10.1016/j.tice.2023.102034
Comments (0)