Clinical, Biochemical and Radiological Features of Gene Variants in Children

Bolamperti S, Villa I, Rubinacci A (2022) Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 10:48. https://doi.org/10.1038/s41413-022-00219-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunetti G, D’Amato G, Chiarito M et al (2019) An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J Pediatr 15:4–11. https://doi.org/10.1007/s12519-018-0198-7

Article  CAS  PubMed  Google Scholar 

Marini F, Giusti F, Palmini G, Brandi ML (2023) Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 34:213–238. https://doi.org/10.1007/s00198-022-06523-7

Article  CAS  PubMed  Google Scholar 

Costantini A, Mäkitie RE, Hartmann MA et al (2022) Early-onset osteoporosis: rare monogenic forms elucidate the complexity of disease pathogenesis beyond type I collagen. J Bone Miner Res 37:1623–1641. https://doi.org/10.1002/jbmr.4668

Article  CAS  PubMed  Google Scholar 

Unger S, Ferreira CR, Mortier GR et al (2023) Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A 191:1164–1209. https://doi.org/10.1002/ajmg.a.63132

Article  PubMed  PubMed Central  Google Scholar 

Jovanovic M, Guterman-Ram G, Marini JC (2022) Osteogenesis imperfecta: mechanisms and signaling pathways connecting classical and rare OI types. Endocr Rev 43:61–90. https://doi.org/10.1210/endrev/bnab017

Article  PubMed  Google Scholar 

Collet C, Ostertag A, Ricquebourg M et al (2018) Primary osteoporosis in young adults: genetic basis and identification of novel variants in causal genes. JBMR Plus 2:12–21. https://doi.org/10.1002/jbm4.10020

Article  PubMed  Google Scholar 

Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192. https://doi.org/10.1038/nm.3074

Article  CAS  PubMed  Google Scholar 

Abdel-Hamid MS, Elhossini RM, Otaify GA et al (2022) Osteoporosis-pseudoglioma syndrome in four new patients: identification of two novel LRP5 variants and insights on patients’ management using bisphosphonates therapy. Osteoporos Int 33:1501–1510. https://doi.org/10.1007/s00198-022-06313-1

Article  CAS  PubMed  Google Scholar 

Mäkitie RE, Costantini A, Kämpe A et al (2019) New insights into monogenic causes of osteoporosis. Front Endocrinol (Lausanne) 10:70. https://doi.org/10.3389/fendo.2019.00070

Article  PubMed  Google Scholar 

Zhao R, Wang S, Zhao P et al (2022) Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 50:441–448. https://doi.org/10.1111/ceo.14037

Article  CAS  PubMed  Google Scholar 

Hartikka H, Mäkitie O, Männikkö M et al (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 20:783–789. https://doi.org/10.1359/JBMR.050101

Article  CAS  PubMed  Google Scholar 

Korvala J, Jüppner H, Mäkitie O et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26. https://doi.org/10.1186/1471-2350-13-26

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fahiminiya S, Majewski J, Mort J et al (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348. https://doi.org/10.1136/jmedgenet-2013-101567

Article  CAS  PubMed  Google Scholar 

Jiao X, Ventruto V, Trese MT et al (2004) Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 75:878–884. https://doi.org/10.1086/425080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deodati A, Fintini D, Levtchenko E et al (2022) Mechanisms of acute hypercalcemia in pediatric patients following the interruption of Denosumab. J Endocrinol Invest 45:159–166. https://doi.org/10.1007/s40618-021-01630-4

Article  CAS  PubMed  Google Scholar 

Gordon CM, Leonard MB, Zemel BS, International Society for Clinical Densitometry (2014) 2013 Pediatric position development conference: executive summary and reflections. J Clin Densitom 17:219–224. https://doi.org/10.1016/j.jocd.2014.01.007

Weber DR, Boyce A, Gordon C et al (2019) The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom 22:567–589. https://doi.org/10.1016/j.jocd.2019.07.002

Article  PubMed  PubMed Central  Google Scholar 

Stürznickel J, Rolvien T, Delsmann A et al (2021) Clinical phenotype and relevance of LRP5 and LRP6 variants in patients with early-onset osteoporosis (EOOP). J Bone Miner Res 36:271–282. https://doi.org/10.1002/jbmr.4197

Article  CAS  PubMed  Google Scholar 

Crabtree NJ, Shaw NJ, Bishop NJ et al (2017) Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults-the ALPHABET study. J Bone Miner Res 32:172–180. https://doi.org/10.1002/jbmr.2935

Article  PubMed  Google Scholar 

Fahiminiya S, Majewski J, Roughley P et al (2013) Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density. Bone 57:41–46. https://doi.org/10.1016/j.bone.2013.07.020

Article  CAS  PubMed  Google Scholar 

Faienza MF, D’Amato G, Chiarito M et al (2019) Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 10:269. https://doi.org/10.3389/fendo.2019.00269

Article  PubMed  Google Scholar 

Yadav VK, Ryu J-H, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837. https://doi.org/10.1016/j.cell.2008.09.059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Wesenbeeck L, Cleiren E, Gram J et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771. https://doi.org/10.1086/368277

Article  PubMed  PubMed Central  Google Scholar 

Bacchetta J, Wesseling-Perry K, Gilsanz V et al (2013) Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol Online J 11:6. https://doi.org/10.1186/1546-0096-11-6

Article  PubMed  PubMed Central  Google Scholar 

Rauch F, Travers R, Norman ME et al (2002) The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31:85–89. https://doi.org/10.1016/s8756-3282(02)00814-1

Article  CAS  PubMed  Google Scholar 

Bianchine JW, Briard-Guillemot ML, Maroteaux P, Frezal J, Harrison HE (1972) Generalized osteoporosis with bilateral pseudoglioma—an autosomal recessive disorder of connective tissue: report of three families—review of the literature. Am J Hum Genet 24:34A

Ghatan S, Costantini A, Li R et al (2021) The polygenic and monogenic basis of paediatric fractures. Curr Osteoporos Rep 19:481–493. https://doi.org/10.1007/s11914-021-00680-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faienza MF, Chiarito M, D’amato G et al (2018) Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther 18:149–157. https://doi.org/10.1080/14712598.2018.1401607

Article  CAS  PubMed  Google Scholar 

Kerschan-Schindl K (2020) Romosozumab: a novel bone anabolic treatment option for osteoporosis? Wien Med Wochenschr 170:124–131. https://doi.org/10.1007/s10354-019-00721-5

Article 

Comments (0)

No login
gif