Bolamperti S, Villa I, Rubinacci A (2022) Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 10:48. https://doi.org/10.1038/s41413-022-00219-8
Article CAS PubMed PubMed Central Google Scholar
Brunetti G, D’Amato G, Chiarito M et al (2019) An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J Pediatr 15:4–11. https://doi.org/10.1007/s12519-018-0198-7
Article CAS PubMed Google Scholar
Marini F, Giusti F, Palmini G, Brandi ML (2023) Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 34:213–238. https://doi.org/10.1007/s00198-022-06523-7
Article CAS PubMed Google Scholar
Costantini A, Mäkitie RE, Hartmann MA et al (2022) Early-onset osteoporosis: rare monogenic forms elucidate the complexity of disease pathogenesis beyond type I collagen. J Bone Miner Res 37:1623–1641. https://doi.org/10.1002/jbmr.4668
Article CAS PubMed Google Scholar
Unger S, Ferreira CR, Mortier GR et al (2023) Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A 191:1164–1209. https://doi.org/10.1002/ajmg.a.63132
Article PubMed PubMed Central Google Scholar
Jovanovic M, Guterman-Ram G, Marini JC (2022) Osteogenesis imperfecta: mechanisms and signaling pathways connecting classical and rare OI types. Endocr Rev 43:61–90. https://doi.org/10.1210/endrev/bnab017
Collet C, Ostertag A, Ricquebourg M et al (2018) Primary osteoporosis in young adults: genetic basis and identification of novel variants in causal genes. JBMR Plus 2:12–21. https://doi.org/10.1002/jbm4.10020
Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192. https://doi.org/10.1038/nm.3074
Article CAS PubMed Google Scholar
Abdel-Hamid MS, Elhossini RM, Otaify GA et al (2022) Osteoporosis-pseudoglioma syndrome in four new patients: identification of two novel LRP5 variants and insights on patients’ management using bisphosphonates therapy. Osteoporos Int 33:1501–1510. https://doi.org/10.1007/s00198-022-06313-1
Article CAS PubMed Google Scholar
Mäkitie RE, Costantini A, Kämpe A et al (2019) New insights into monogenic causes of osteoporosis. Front Endocrinol (Lausanne) 10:70. https://doi.org/10.3389/fendo.2019.00070
Zhao R, Wang S, Zhao P et al (2022) Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 50:441–448. https://doi.org/10.1111/ceo.14037
Article CAS PubMed Google Scholar
Hartikka H, Mäkitie O, Männikkö M et al (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 20:783–789. https://doi.org/10.1359/JBMR.050101
Article CAS PubMed Google Scholar
Korvala J, Jüppner H, Mäkitie O et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26. https://doi.org/10.1186/1471-2350-13-26
Article CAS PubMed PubMed Central Google Scholar
Fahiminiya S, Majewski J, Mort J et al (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348. https://doi.org/10.1136/jmedgenet-2013-101567
Article CAS PubMed Google Scholar
Jiao X, Ventruto V, Trese MT et al (2004) Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 75:878–884. https://doi.org/10.1086/425080
Article CAS PubMed PubMed Central Google Scholar
Deodati A, Fintini D, Levtchenko E et al (2022) Mechanisms of acute hypercalcemia in pediatric patients following the interruption of Denosumab. J Endocrinol Invest 45:159–166. https://doi.org/10.1007/s40618-021-01630-4
Article CAS PubMed Google Scholar
Gordon CM, Leonard MB, Zemel BS, International Society for Clinical Densitometry (2014) 2013 Pediatric position development conference: executive summary and reflections. J Clin Densitom 17:219–224. https://doi.org/10.1016/j.jocd.2014.01.007
Weber DR, Boyce A, Gordon C et al (2019) The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom 22:567–589. https://doi.org/10.1016/j.jocd.2019.07.002
Article PubMed PubMed Central Google Scholar
Stürznickel J, Rolvien T, Delsmann A et al (2021) Clinical phenotype and relevance of LRP5 and LRP6 variants in patients with early-onset osteoporosis (EOOP). J Bone Miner Res 36:271–282. https://doi.org/10.1002/jbmr.4197
Article CAS PubMed Google Scholar
Crabtree NJ, Shaw NJ, Bishop NJ et al (2017) Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults-the ALPHABET study. J Bone Miner Res 32:172–180. https://doi.org/10.1002/jbmr.2935
Fahiminiya S, Majewski J, Roughley P et al (2013) Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density. Bone 57:41–46. https://doi.org/10.1016/j.bone.2013.07.020
Article CAS PubMed Google Scholar
Faienza MF, D’Amato G, Chiarito M et al (2019) Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 10:269. https://doi.org/10.3389/fendo.2019.00269
Yadav VK, Ryu J-H, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837. https://doi.org/10.1016/j.cell.2008.09.059
Article CAS PubMed PubMed Central Google Scholar
Van Wesenbeeck L, Cleiren E, Gram J et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771. https://doi.org/10.1086/368277
Article PubMed PubMed Central Google Scholar
Bacchetta J, Wesseling-Perry K, Gilsanz V et al (2013) Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol Online J 11:6. https://doi.org/10.1186/1546-0096-11-6
Article PubMed PubMed Central Google Scholar
Rauch F, Travers R, Norman ME et al (2002) The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31:85–89. https://doi.org/10.1016/s8756-3282(02)00814-1
Article CAS PubMed Google Scholar
Bianchine JW, Briard-Guillemot ML, Maroteaux P, Frezal J, Harrison HE (1972) Generalized osteoporosis with bilateral pseudoglioma—an autosomal recessive disorder of connective tissue: report of three families—review of the literature. Am J Hum Genet 24:34A
Ghatan S, Costantini A, Li R et al (2021) The polygenic and monogenic basis of paediatric fractures. Curr Osteoporos Rep 19:481–493. https://doi.org/10.1007/s11914-021-00680-0
Article CAS PubMed PubMed Central Google Scholar
Faienza MF, Chiarito M, D’amato G et al (2018) Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther 18:149–157. https://doi.org/10.1080/14712598.2018.1401607
Article CAS PubMed Google Scholar
Kerschan-Schindl K (2020) Romosozumab: a novel bone anabolic treatment option for osteoporosis? Wien Med Wochenschr 170:124–131. https://doi.org/10.1007/s10354-019-00721-5
Comments (0)