Quantitative Computed Tomography-Based Analysis of Bone Structure in the Surgical Neck of the Humerus during Aging in Men

Sumrein BO, Berg HE, Launonen AP, Landell P, Laitinen MK, Felländer-Tsai L, Mattila VM, Huttunen TT (2023) Mortality following proximal humerus fracture-a nationwide register study of 147,692 fracture patients in Sweden. Osteoporos Int 34(2):349–356. https://doi.org/10.1007/s00198-022-06612-7

Article  PubMed  Google Scholar 

Bahrs C, Bauer M, Blumenstock G, Eingartner C, Bahrs SD, Tepass A, Weise K, Rolauffs B (2013) The complexity of proximal humeral fractures is age and gender specific. J Orthop Sci 18(3):465–470. https://doi.org/10.1007/s00776-013-0361-x

Article  PubMed  Google Scholar 

Cederwall A, Karlsson MK, Rosengren BE (2024) Time trends in proximal humeral fractures from 1944 to 2020—A cohort study in Malmö, Sweden. BMC Musculoskelet Disord 25(1):491. https://doi.org/10.1186/s12891-024-07602-y

Article  PubMed  PubMed Central  Google Scholar 

Helfen T, Sprecher CM, Eberli U, Gueorguiev B, Müller PE, Richards RG, Schmidutz F (2017) High-resolution tomography-based quantification of cortical porosity and cortical thickness at the surgical neck of the humerus during aging. Calcif Tissue Int 101(3):271–279. https://doi.org/10.1007/s00223-017-0279-y

Article  CAS  PubMed  Google Scholar 

Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. https://doi.org/10.1016/S0140-6736(10)60320-0

Article  PubMed  Google Scholar 

Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954. https://doi.org/10.1359/JBMR.040916

Article  PubMed  Google Scholar 

Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, Guralnik J, Ferrucci L (2006) Structural adaptations to bone loss in aging men and women. Bone 38(1):112–118. https://doi.org/10.1016/j.bone.2005.07.025

Article  PubMed  Google Scholar 

Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349(4):327–334. https://doi.org/10.1056/NEJMoa022464. (PMID: 12878739)

Article  PubMed  Google Scholar 

Srinivasan B, Kopperdahl DL, Amin S, Atkinson EJ, Camp J, Robb RA, Riggs BL, Orwoll ES, Melton LJ 3rd, Keaveny TM, Khosla S (2012) Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int 23(1):155–162. https://doi.org/10.1007/s00198-011-1822-8

Article  CAS  PubMed  Google Scholar 

Wang Y, Li J, Men Y, Wei W (2024) Changes in bone density and structure of proximal humerus with aging in Chinese women. Injury 55(7):111611. https://doi.org/10.1016/j.injury.2024.111611

Article  PubMed  Google Scholar 

Jepsen KJ, Bigelow EM, Casden MA, Goulet RW, Kennedy K, Hertz S, Kadur C, Nolan BT, Richards-McCullough K, Merillat S, Karvonen-Gutierrez CA, Clines G, Bredbenner TL (2023) Associations among hip structure, bone mineral density, and strength vary with external bone size in white women. JBMR Plus 7(3):e10715. https://doi.org/10.1002/jbm4.10715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolger MW, Romanowicz GE, Bigelow EMR, Ward FS, Ciarelli A, Jepsen KJ, Kohn DH (2020) External bone size identifies different strength-decline trajectories for the male human femora. J Struct Biol 212(3):107650. https://doi.org/10.1016/j.jsb.2020.107650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su Y, Wang L, Liu X, Yang M, Yi C, Liu Y, Huang P, Guo Z, Yu A, Cheng X, Wu X, Blake GM, Engelke K (2020) Lack of periosteal apposition in the head and neck of femur after menopause in Chinese women with high risk for hip fractures—A cross-sectional study with QCT. Bone 139:115545. https://doi.org/10.1016/j.bone.2020.115545. (Epub 2020 Jul 27)

Article  PubMed  Google Scholar 

Schmidutz F, Yan SG, Schopf C, Ihle C, Ahrend MD, Sprecher CM (2021) Cortical bone thickness predicts the quantitative bone mineral density of the proximal humerus. Arch Osteoporos 16(1):33. https://doi.org/10.1007/s11657-021-00896-8

Article  PubMed  Google Scholar 

Bergdahl C, Wennergren D, Ekelund J, Möller M (2020) Mortality after a proximal humeral fracture. Bone Joint J 13:1–7. https://doi.org/10.1302/0301-620X.102B9.BJJ-2020-0627.R1

Article  Google Scholar 

Schmidutz F, Schopf C, Yan SG, Ahrend MD, Ihle C, Sprecher C (2021) Cortical bone thickness of the distal radius predicts the local bone mineral density. Bone Joint Res 10(12):820–829. https://doi.org/10.1302/2046-3758.1012.BJR-2020-0271.R1

Article  PubMed  PubMed Central  Google Scholar 

Domander R, Felder AA, Doube M (2021) BoneJ2—Refactoring established research software. Wellcome Open Res 6:37

Article  PubMed  PubMed Central  Google Scholar 

Lauretani F, Bandinelli S, Griswold ME, Maggio M, Semba R, Guralnik JM, Ferrucci L (2008) Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 23(3):400–408. https://doi.org/10.1359/jbmr.071103

Article  PubMed  Google Scholar 

Banica T, Verroken C, T’Sjoen G, Goemaere S, Zmierczak HG, Fiers T, Kaufman JM, Lapauw B (2022) Modest changes in sex hormones during early and middle adulthood affect bone mass and size in healthy men: a prospective cohort study. J Bone Miner Res 37(5):865–875. https://doi.org/10.1002/jbmr.4543

Article  CAS  PubMed  Google Scholar 

Luo Y (2020) Age-related periosteal expansion at femoral neck among elderly women may maintain bending stiffness, but not femoral strength. Osteoporos Int 31(2):371–377. https://doi.org/10.1007/s00198-019-05165-6

Article  CAS  PubMed  Google Scholar 

Greendale GA, Huang M, Cauley JA, Liao D, Harlow S, Finkelstein JS, Hans D, Karlamangla AS (2020) Trabecular bone score declines during the menopause transition: the study of women’s health across the nation (SWAN). J Clin Endocrinol Metab 105(4):e1872–e1882. https://doi.org/10.1210/clinem/dgz056

Article  PubMed  Google Scholar 

Szulc P (2022) Role of sex steroids hormones in the regulation of bone metabolism in men: evidence from clinical studies. Best Pract Res Clin Endocrinol Metab 36(2):101624. https://doi.org/10.1016/j.beem.2022.101624. (Epub 2022 Feb 4)

Article  CAS  PubMed  Google Scholar 

Shieh A, Ishii S, Greendale GA, Cauley JA, Karvonen-Gutierrez C, Karlamangla AS (2019) A bone resorption marker as predictor of rate of change in femoral neck size and strength during the menopause transition. Osteoporos Int 30(12):2449–2457. https://doi.org/10.1007/s00198-019-05099-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 4(20):119–143. https://doi.org/10.1146/annurev-bioeng-062117-121139

Article  CAS  Google Scholar 

Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469(8):2139–2149. https://doi.org/10.1007/s11999-011-1784-3

Article  PubMed  PubMed Central  Google Scholar 

Lo JC, Chandra M, Lee C, Darbinian JA, Ramaswamy M, Ettinger B (2020) Bone mineral density in older U.S. Filipino, Chinese, Japanese, and white women. J Am Geriatr Soc 68(11):2656–2661. https://doi.org/10.1111/jgs.16785

Article  PubMed  Google Scholar 

Morin SN, Berger C, Liu W, Prior JC, Cheung AM, Hanley DA, Boyd SK, Wong AKO, Papaioannou A, Rahme E, Goltzman D, CaMos Research Group (2020) Differences in fracture prevalence and in bone mineral density between Chinese and White Canadians: the Canadian Multicentre Osteoporosis Study (CaMos). Arch Osteoporos 15(1):147. https://doi.org/10.1007/s11657-020-00822-4

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif