Effects of Peripheral Magnetic Stimulation on Bone Healing After Fractures in Mice

Sakitani N, Iwasawa H, Nomura M et al (2017) Mechanical Stress by Spasticity Accelerates Fracture Healing After Spinal Cord Injury. Calcif Tissue Int 101:384–395. https://doi.org/10.1007/s00223-017-0293-0

Article  CAS  PubMed  Google Scholar 

Ebrahim S, Mollon B, Bance S et al (2014) Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta-analysis. Can J Surg 57:E105–E118. https://doi.org/10.1503/cjs.010113

Article  PubMed  PubMed Central  Google Scholar 

Júlio SU, Schneuwly M, Scheuren PS et al (2025) Does intra-epidermal electrical stimulation activate mechano- and thermo-nociceptors? A discrimination approach. J Neurosci Methods 416:110382. https://doi.org/10.1016/j.jneumeth.2025.110382

Article  CAS  PubMed  Google Scholar 

Aaron RK, Ciombor DM (1993) Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem 52(1):42–46. https://doi.org/10.1002/jcb.240520107

Article  CAS  PubMed  Google Scholar 

Barker AT (1991) An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 8:26–37. https://doi.org/10.1097/00004691-199101000-00005

Article  CAS  PubMed  Google Scholar 

Kanjanapanang N, Munakomi S, Chang K-V (2021) Peripheral Magnetic Stimulation. In: PubMed. https://www.ncbi.nlm.nih.gov/books/NBK526087/

StÖlting MNL, Arnold AS, Haralampieva D et al (2016) Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle Nerve 53:598–607. https://doi.org/10.1002/mus.24780

Article  PubMed  PubMed Central  Google Scholar 

Shimada Y, Tsutomu S, Matsunaga T et al (2006) Effects of therapeutic magnetic stimulation on acute muscle atrophy in rats after hindlimb suspension. Biomed Res 27:23–27. https://doi.org/10.2220/biomedres.27.23

Article  CAS  PubMed  Google Scholar 

Kubo K, Sakamoto J, Honda A et al (2019) Effects of twitch contraction induced by magnetic stimulation on expression of skeletal muscle fibrosis related genes and limited range of motion in rats. Am J Phys Med Rehabil 98:147–153. https://doi.org/10.1097/phm.0000000000001042

Article  PubMed  Google Scholar 

Suzuki K, Ito T, Okada Y, Hiraoka T, Hanayama K, Tsubahara A (2020) Preventive effects of repetitive peripheral magnetic stimulation on muscle atrophy in the paretic lower limb of acute stroke patients: a pilot study. Progress in Rehabilitation Medicine 5:20200008. https://doi.org/10.2490/prm.20200008

Article  PubMed  PubMed Central  Google Scholar 

Okudera Y, Matsunaga T, Sato M, Chida S, Hatakeyama K, Watanabe M, Shimada Y (2015) The impact of high-frequency magnetic stimulation of peripheral nerves: muscle hardness, venous blood flow, and motor function of upper extremity in healthy subjects. Biomed Res 36(2):81–87. https://doi.org/10.2220/biomedres.36.81

Article  CAS  PubMed  Google Scholar 

Yang J, Wang S, Zhang G et al (2021) Static Magnetic Field (2–4 T) Improves Bone Microstructure and Mechanical Properties by Coordinating Osteoblast/Osteoclast Differentiation in Mice. Bioelectromagnetics 42:200–211. https://doi.org/10.1002/bem.22324

Article  CAS  PubMed  Google Scholar 

Okada R, Yamato K, Kawakami M et al (2021) Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells. Bone Reports 14:100757–100757. https://doi.org/10.1016/j.bonr.2021.100757

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek J, Park N, Lee BJ et al (2018) Effects of repetitive peripheral magnetic stimulation over vastus lateralis in patients after hip replacement surgery. Ann Rehabil Med 42:67–67. https://doi.org/10.5535/arm.2018.42.1.67

Article  PubMed  PubMed Central  Google Scholar 

Leversedge FJ, Srinivasan RC (2012) Management of Soft-Tissue Injuries in Distal Radius Fractures. Hand Clin 28:225–233. https://doi.org/10.1016/j.hcl.2012.03.005

Article  PubMed  Google Scholar 

Porcellini M, Capasso R et al (1997) Combined vascular injuries and limb fractures. Minerva Cardioangiol 45:131–138

CAS  PubMed  Google Scholar 

Nazzal MK, Morris AJ, Parker RS et al (2024) Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing. Curr Osteoporos Rep 22:182–192. https://doi.org/10.1007/s11914-023-00850-2

Article  PubMed  PubMed Central  Google Scholar 

Niedermair T, Straub RH, Brochhausen C, Grässel S (2020) Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice. Int J Mol Sci 21(2):405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Z, Yan Y, Yu H et al (2022) Effect of Inter-Fragmentary Gap Size on Neovascularization During Bone Healing: A Micro-CT Imaging Study. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.808182

Article  PubMed  PubMed Central  Google Scholar 

Manigrasso MB, O’Connor JP (2004) Characterization of a Closed Femur Fracture Model in Mice. J Orthop Trauma 18:687–695. https://doi.org/10.1097/00005131-200411000-00006

Article  PubMed  Google Scholar 

O’Neill KR, Stutz CM, Mignemi NA et al (2012) Micro-computed tomography assessment of the progression of fracture healing in mice. Bone 50:1357–1367. https://doi.org/10.1016/j.bone.2012.03.008

Article  PubMed  Google Scholar 

Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301

Article  CAS  PubMed  Google Scholar 

Men Z, Huang C, Xu M et al (2022) Zhuanggu Zhitong Capsule alleviates postmenopausal osteoporosis in ovariectomized rats by regulating autophagy through AMPK/mTOR signaling pathway. Annals of Transl Med 10:900. https://doi.org/10.21037/atm-22-3724

Article  CAS  Google Scholar 

Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143. https://doi.org/10.1679/aohc.66.123

Article  PubMed  Google Scholar 

Montes-Medina L, Hernández-Fernández A, Gutiérrez-Rivera A et al (2018) Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model. Injury 49:1979–1986. https://doi.org/10.1016/j.injury.2018.09.007

Article  PubMed  Google Scholar 

Allen HB, Wase AW, Bear WT (1980) Indomethacin and aspirin: effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Orthopaedica Scandinavica 51:595–600. https://doi.org/10.3109/17453678008990848

Article  CAS  Google Scholar 

Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. PubMed 23:291–299

CAS  Google Scholar 

Inoue S, Hatakeyama J, Aoki H et al (2021) Utilization of mechanical stress to treat osteoporosis: the effects of electrical stimulation, radial extracorporeal shock wave, and ultrasound on experimental osteoporosis in ovariectomized rats. Calcif Tissue Int 109:215–229. https://doi.org/10.1007/s00223-021-00831-6

Article  CAS  PubMed  Google Scholar 

Xu T, Jin H, Lao Y et al (2017) Administration of erythropoietin prevents bone loss in osteonecrosis of the femoral head in mice. Mol Med Rep 16:8755–8762. https://doi.org/10.3892/mmr.2017.7735

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong Q, Gao S, Li P et al (2024) Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol 130:111766–111766. https://doi.org/10.1016/j.intimp.2024.111766

Article  CAS  PubMed 

Comments (0)

No login
gif