Nucleic acid aptamers in orthopedic diseases: promising therapeutic agents for bone disorders

Ma, H. et al. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev. 44, 1240–1256 (2015).

Article  PubMed  Google Scholar 

Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

Article  PubMed  Google Scholar 

Gao, F. et al. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front. Bioeng. Biotechnol. 10, 972933 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Hu, X. et al. Structure-guided designing pre-organization in bivalent aptamers. J. Am. Chem. Soc. 144, 4507–4514 (2022).

Article  PubMed  Google Scholar 

Di Matteo, M., Belay, E., Chuah, M. K. & VandenDriessche, T. Recent developments in transposon-mediated gene therapy. Expert Opin. Biol. Ther. 12, 841–858 (2012).

Article  PubMed  Google Scholar 

Sivakumar, P., Kim, S., Kang, H. C. & Shim, M. S. Targeted siRNA delivery using aptamer‐siRNA chimeras and aptamer‐conjugated nanoparticles. WIREs Nanomed. Nanobiotechnology 11, e1543 (2018).

Article  Google Scholar 

Yan, Y. et al. Non-viral vectors for RNA delivery. J. Control. Release 342, 241–279 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Weng, Y., Xiao, H., Zhang, J., Liang, X.-J. & Huang, Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv. 37, 801–825 (2019).

Article  PubMed  Google Scholar 

Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

Article  PubMed  Google Scholar 

Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

Article  PubMed  Google Scholar 

Bartel, D. P. MicroRNAs. Cell 116, 281–297 (2004).

Article  PubMed  Google Scholar 

Kuersten, S. & Goodwin, E. B. The power of the 3′ UTR: translational control and development. Nat. Rev. Genet. 4, 626–637 (2003).

Article  PubMed  Google Scholar 

Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

Article  PubMed  Google Scholar 

Jenison, R. D., Gill, S. C., Pardi, A. & Polisky, B. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).

Article  PubMed  Google Scholar 

Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 123, 4928–4931 (2001).

Article  PubMed  Google Scholar 

Baker, B. R. et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128, 3138–3139 (2006).

Article  PubMed  Google Scholar 

Strehlitz, B., Nikolaus, N. & Stoltenburg, R. Protein detection with aptamer biosensors. Sensors 8, 4296–4307 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Hamaguchi, N., Ellington, A. & Stanton, M. Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001).

Article  PubMed  Google Scholar 

Daniels, D. A., Chen, H., Hicke, B. J., Swiderek, K. M. & Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. 100, 15416–15421 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Sayyed, S. G. et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52, 2445–2454 (2009).

Article  PubMed  Google Scholar 

Bagalkot, V., Farokhzad, O. C., Langer, R. & Jon, S. An aptamer–doxorubicin physical conjugate as a novel targeted drug‐delivery platform. Angew. Chem. Int. Ed. 45, 8149–8152 (2006).

Article  Google Scholar 

Poudineh, M., Sargent, E. H., Pantel, K. & Kelley, S. O. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat. Biomed. Eng. 2, 72–84 (2018).

Article  PubMed  Google Scholar 

Phillips, J. A., Xu, Y., Xia, Z., Fan, Z. H. & Tan, W. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal. Chem. 81, 1033–1039 (2008).

Article  Google Scholar 

Zhu, J., Nguyen, T., Pei, R., Stojanovic, M. & Lin, Q. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 12, 3504–3513 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Kim, J., Lee, E., Kang, Y. Y. & Mok, H. Multivalent aptamer–RNA based fluorescent probes for carrier-free detection of cellular microRNA-34a in mucin1-expressing cancer cells. Chem. Commun. 51, 9038–9041 (2015).

Article  Google Scholar 

Song, Y. et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92, 9895–9900 (2020).

Article  PubMed  Google Scholar 

Liu, X. et al. Neutralizing aptamers block S/RBD‐ACE2 interactions and prevent host cell infection. Angew. Chem. 133, 10361–10366 (2021).

Article  PubMed  Google Scholar 

Schmitz, A. et al. A SARS‐CoV‐2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD‐independent mechanism.Angew. Chem. 133, 10367–10373 (2021).

Article  PubMed  Google Scholar 

Sun, M. et al. Aptamer blocking strategy inhibits SARS‐CoV‐2 virus infection. Angew. Chem. Int. Ed. 60, 10266–10272 (2021).

Article  Google Scholar 

Liu, R., He, L., Hu, Y., Luo, Z. & Zhang, J. A serological aptamer-assisted proximity ligation assay for COVID-19 diagnosis and seeking neutralizing aptamers. Chem. Sci. 11, 12157–12164 (2020).

Article  PubMed  PubMed Central  Google Scholar 

He, J. et al. Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer. J. Am. Chem. Soc. 142, 2699–2703 (2020).

Article  PubMed  Google Scholar 

Li, Y. et al. A new paradigm for artesunate anticancer function: considerably enhancing the cytotoxicity via conjugating artesunate with aptamer. Signal Transduct. Target. Ther. 6, 327 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gandotra, R. et al. Aptamer selection against alpha-defensin human neutrophil peptide 1 on an integrated microfluidic system for diagnosis of periprosthetic joint infections. Lab Chip 22, 250–261 (2022).

Article  PubMed  Google Scholar 

Chen, T.-W. et al. Automatic detection of two synovial fluid periprosthetic joint infection biomarkers on an integrated microfluidic system. Anal. Chem. 95, 7693–7701 (2023).

Article  PubMed  Google Scholar 

Lipps, H. J. & Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 19, 414–422 (2009).

Article  PubMed  Google Scholar 

Wang, R. E., Wu, H., Niu, Y. & Cai, J. Improving the stability of aptamers by chemical modification. Curr. Med. Chem. 18, 4126–4138 (2011).

Article  PubMed 

Comments (0)

No login
gif