Ma, H. et al. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev. 44, 1240–1256 (2015).
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).
Gao, F. et al. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front. Bioeng. Biotechnol. 10, 972933 (2022).
Article PubMed PubMed Central Google Scholar
Hu, X. et al. Structure-guided designing pre-organization in bivalent aptamers. J. Am. Chem. Soc. 144, 4507–4514 (2022).
Di Matteo, M., Belay, E., Chuah, M. K. & VandenDriessche, T. Recent developments in transposon-mediated gene therapy. Expert Opin. Biol. Ther. 12, 841–858 (2012).
Sivakumar, P., Kim, S., Kang, H. C. & Shim, M. S. Targeted siRNA delivery using aptamer‐siRNA chimeras and aptamer‐conjugated nanoparticles. WIREs Nanomed. Nanobiotechnology 11, e1543 (2018).
Yan, Y. et al. Non-viral vectors for RNA delivery. J. Control. Release 342, 241–279 (2022).
Article PubMed PubMed Central Google Scholar
Weng, Y., Xiao, H., Zhang, J., Liang, X.-J. & Huang, Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv. 37, 801–825 (2019).
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).
Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).
Bartel, D. P. MicroRNAs. Cell 116, 281–297 (2004).
Kuersten, S. & Goodwin, E. B. The power of the 3′ UTR: translational control and development. Nat. Rev. Genet. 4, 626–637 (2003).
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).
Jenison, R. D., Gill, S. C., Pardi, A. & Polisky, B. High-resolution molecular discrimination by RNA. Science 263, 1425–1429 (1994).
Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 123, 4928–4931 (2001).
Baker, B. R. et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128, 3138–3139 (2006).
Strehlitz, B., Nikolaus, N. & Stoltenburg, R. Protein detection with aptamer biosensors. Sensors 8, 4296–4307 (2008).
Article PubMed PubMed Central Google Scholar
Hamaguchi, N., Ellington, A. & Stanton, M. Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001).
Daniels, D. A., Chen, H., Hicke, B. J., Swiderek, K. M. & Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. 100, 15416–15421 (2003).
Article PubMed PubMed Central Google Scholar
Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).
Article PubMed PubMed Central Google Scholar
Sayyed, S. G. et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52, 2445–2454 (2009).
Bagalkot, V., Farokhzad, O. C., Langer, R. & Jon, S. An aptamer–doxorubicin physical conjugate as a novel targeted drug‐delivery platform. Angew. Chem. Int. Ed. 45, 8149–8152 (2006).
Poudineh, M., Sargent, E. H., Pantel, K. & Kelley, S. O. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat. Biomed. Eng. 2, 72–84 (2018).
Phillips, J. A., Xu, Y., Xia, Z., Fan, Z. H. & Tan, W. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal. Chem. 81, 1033–1039 (2008).
Zhu, J., Nguyen, T., Pei, R., Stojanovic, M. & Lin, Q. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 12, 3504–3513 (2012).
Article PubMed PubMed Central Google Scholar
Kim, J., Lee, E., Kang, Y. Y. & Mok, H. Multivalent aptamer–RNA based fluorescent probes for carrier-free detection of cellular microRNA-34a in mucin1-expressing cancer cells. Chem. Commun. 51, 9038–9041 (2015).
Song, Y. et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92, 9895–9900 (2020).
Liu, X. et al. Neutralizing aptamers block S/RBD‐ACE2 interactions and prevent host cell infection. Angew. Chem. 133, 10361–10366 (2021).
Schmitz, A. et al. A SARS‐CoV‐2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD‐independent mechanism.Angew. Chem. 133, 10367–10373 (2021).
Sun, M. et al. Aptamer blocking strategy inhibits SARS‐CoV‐2 virus infection. Angew. Chem. Int. Ed. 60, 10266–10272 (2021).
Liu, R., He, L., Hu, Y., Luo, Z. & Zhang, J. A serological aptamer-assisted proximity ligation assay for COVID-19 diagnosis and seeking neutralizing aptamers. Chem. Sci. 11, 12157–12164 (2020).
Article PubMed PubMed Central Google Scholar
He, J. et al. Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer. J. Am. Chem. Soc. 142, 2699–2703 (2020).
Li, Y. et al. A new paradigm for artesunate anticancer function: considerably enhancing the cytotoxicity via conjugating artesunate with aptamer. Signal Transduct. Target. Ther. 6, 327 (2021).
Article PubMed PubMed Central Google Scholar
Gandotra, R. et al. Aptamer selection against alpha-defensin human neutrophil peptide 1 on an integrated microfluidic system for diagnosis of periprosthetic joint infections. Lab Chip 22, 250–261 (2022).
Chen, T.-W. et al. Automatic detection of two synovial fluid periprosthetic joint infection biomarkers on an integrated microfluidic system. Anal. Chem. 95, 7693–7701 (2023).
Lipps, H. J. & Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 19, 414–422 (2009).
Wang, R. E., Wu, H., Niu, Y. & Cai, J. Improving the stability of aptamers by chemical modification. Curr. Med. Chem. 18, 4126–4138 (2011).
Comments (0)