FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia

Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. WIREs Dev. Biol. 4, 215–266 (2015).

Article  CAS  Google Scholar 

Delezoide, A. L. et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech. Dev. 77, 19–30 (1998).

Article  CAS  PubMed  Google Scholar 

Eswarakumar, V. P., Horowitz, M. C., Locklin, R., Morriss-Kay, G. M. & Lonai, P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc. Natl. Acad. Sci. 101, 12555–12560 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ornitz, D. M. & Marie, P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16, 1446–1465 (2002).

Article  CAS  PubMed  Google Scholar 

Rice, D. P. C., Rice, R. & Thesleff, I. Fgfr mRNA isoforms in craniofacial bone development. Bone 33, 14–27 (2003).

Article  CAS  PubMed  Google Scholar 

Havens, B. A. et al. Roles of FGFR3 during morphogenesis of Meckel’s cartilage and mandibular bones. Dev. Biol. 316, 336–349 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsushita, T. et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum. Mol. Genet. 18, 227–240 (2009).

Article  CAS  PubMed  Google Scholar 

Di Rocco, F. et al. FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum. Mol. Genet. 23, 2914–2925 (2014).

Article  PubMed  Google Scholar 

Teven, C. M., Farina, E. M., Rivas, J. & Reid, R. R. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis. 1, 199–213 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Biosse Duplan, M. et al. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum. Mol. Genet. 25, 2997–3010 (2016).

Yu, K., Karuppaiah, K. & Ornitz, D. M. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation. Dev. Dyn. 244, 1427–1438 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cornille, M. et al. FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model. J. Exp. Med. 219, e20201879 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Wei, X., Hu, M., Mishina, Y. & Liu, F. Developmental regulation of the growth plate and cranial synchondrosis. J. Dent. Res. 95, 1221–1229 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brăescu, R. et al. Pointing on the early stages of maxillary bone and tooth development - histological findings. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 61, 167–174 (2020).

Article  Google Scholar 

Galea, G. L., Zein, M. R., Allen, S. & Francis‐West, P. Making and shaping endochondral and intramembranous bones. Dev. Dyn. 250, 414–449 (2021).

Article  CAS  PubMed  Google Scholar 

Svandova, E., Peterkova, R., Matalova, E. & Lesot, H. Formation and developmental specification of the odontogenic and osteogenic mesenchymes. Front. Cell Dev. Biol. 8, 640 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Morice, A. et al. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 141, 115600 (2020).

Article  CAS  PubMed  Google Scholar 

Lattanzi, W., Barba, M., Di Pietro, L. & Boyadjiev, S. A. Genetic advances in craniosynostosis. Am. J. Med. Genet. A. 173, 1406–1429 (2017).

Article  PubMed  Google Scholar 

Shiller, J. G. Craniofacial dysostosis of Crouzon: a case report and pedigree with emphasis on heredity. Pediatrics 23, 107–112 (1959). (1).

Article  CAS  PubMed  Google Scholar 

Rousseau, F. et al. Clinical and genetic heterogeneity of hypochondroplasia. J. Med. Genet. 33, 749–752 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flynn, M. A. & Pauli, R. M. Double heterozygosity in bone growth disorders: Four new observations and review. Am. J. Med. Genet. A. 121A, 193–208 (2003).

Article  PubMed  Google Scholar 

Walker, B. A. Hypochondroplasia. Arch. Pediatr. Adolesc. Med. 122, 95 (1971).

Article  CAS  Google Scholar 

Maroteaux, P. & Falzon, P. [Hypochondroplasia. Review of 80 cases]. Arch. Fr. Pediatr. 45, 105–109 (1988).

CAS  PubMed  Google Scholar 

Motch Perrine, S. M. et al. Embryonic cranial cartilage defects in the Fgfr3 Y367C /+ mouse model of achondroplasia. Anat. Rec. ar.25327 (2023).

Perrine, S. M. M. et al. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Dis. Model. Mech. 12, dmm038513 (2019).

Article  CAS  Google Scholar 

Loisay, L. et al. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice. JCI Insight 8, e168796 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Pitirri, M. K. et al. Meckel’s cartilage in mandibular development and dysmorphogenesis. Front. Genet. 13, 871927 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gambari, L., Grigolo, B. & Grassi, F. Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives. Int. J. Mol. Sci. 20, 5231 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su, N. FGF signaling: its role in bone development and human skeleton diseases. Front. Biosci. 13, 2842 (2008).

Article  CAS  PubMed  Google Scholar 

Chen, H. et al. PTH 1-34 ameliorates the osteopenia and delayed healing of stabilized tibia fracture in mice with achondroplasia resulting from gain-of-function mutation of FGFR3. Int. J. Biol. Sci. 13, 1254–1265 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Julien, A. et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair. Stem Cell Rep. 15, 955–967 (2020).

Article  CAS  Google Scholar 

Cottin, M., Khonsari, R. H. & Friess, M. Assessing cranial plasticity in humans: The impact of artificial deformation on masticatory and basicranial structures. Comptes Rendus Palevol 16, 545–556 (2017). (5-6).

Article  Google Scholar 

Ferros, I., Mora, M. J., Obeso, I. F., Jimenez, P. & Martinez‐Insua, A. Relationship between the cranial base and the mandible in artificially deformed skulls. Orthod. Craniofac. Res. 19, 222–233 (2016).

Article  CAS  PubMed  Google Scholar 

Mugniery, E. et al. An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth. Hum. Mol. Genet. 21, 2503–2513 (2012).

Article  CAS  PubMed  Google Scholar 

Hu, K. & Olsen, B. R. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest. 126, 509–526 (2016).

Article 

Comments (0)

No login
gif