Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. WIREs Dev. Biol. 4, 215–266 (2015).
Delezoide, A. L. et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech. Dev. 77, 19–30 (1998).
Article CAS PubMed Google Scholar
Eswarakumar, V. P., Horowitz, M. C., Locklin, R., Morriss-Kay, G. M. & Lonai, P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc. Natl. Acad. Sci. 101, 12555–12560 (2004).
Article CAS PubMed PubMed Central Google Scholar
Ornitz, D. M. & Marie, P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16, 1446–1465 (2002).
Article CAS PubMed Google Scholar
Rice, D. P. C., Rice, R. & Thesleff, I. Fgfr mRNA isoforms in craniofacial bone development. Bone 33, 14–27 (2003).
Article CAS PubMed Google Scholar
Havens, B. A. et al. Roles of FGFR3 during morphogenesis of Meckel’s cartilage and mandibular bones. Dev. Biol. 316, 336–349 (2008).
Article CAS PubMed PubMed Central Google Scholar
Matsushita, T. et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum. Mol. Genet. 18, 227–240 (2009).
Article CAS PubMed Google Scholar
Di Rocco, F. et al. FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum. Mol. Genet. 23, 2914–2925 (2014).
Teven, C. M., Farina, E. M., Rivas, J. & Reid, R. R. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis. 1, 199–213 (2014).
Article PubMed PubMed Central Google Scholar
Biosse Duplan, M. et al. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum. Mol. Genet. 25, 2997–3010 (2016).
Yu, K., Karuppaiah, K. & Ornitz, D. M. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation. Dev. Dyn. 244, 1427–1438 (2015).
Article CAS PubMed PubMed Central Google Scholar
Cornille, M. et al. FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model. J. Exp. Med. 219, e20201879 (2022).
CAS PubMed PubMed Central Google Scholar
Wei, X., Hu, M., Mishina, Y. & Liu, F. Developmental regulation of the growth plate and cranial synchondrosis. J. Dent. Res. 95, 1221–1229 (2016).
Article CAS PubMed PubMed Central Google Scholar
Brăescu, R. et al. Pointing on the early stages of maxillary bone and tooth development - histological findings. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 61, 167–174 (2020).
Galea, G. L., Zein, M. R., Allen, S. & Francis‐West, P. Making and shaping endochondral and intramembranous bones. Dev. Dyn. 250, 414–449 (2021).
Article CAS PubMed Google Scholar
Svandova, E., Peterkova, R., Matalova, E. & Lesot, H. Formation and developmental specification of the odontogenic and osteogenic mesenchymes. Front. Cell Dev. Biol. 8, 640 (2020).
Article PubMed PubMed Central Google Scholar
Morice, A. et al. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 141, 115600 (2020).
Article CAS PubMed Google Scholar
Lattanzi, W., Barba, M., Di Pietro, L. & Boyadjiev, S. A. Genetic advances in craniosynostosis. Am. J. Med. Genet. A. 173, 1406–1429 (2017).
Shiller, J. G. Craniofacial dysostosis of Crouzon: a case report and pedigree with emphasis on heredity. Pediatrics 23, 107–112 (1959). (1).
Article CAS PubMed Google Scholar
Rousseau, F. et al. Clinical and genetic heterogeneity of hypochondroplasia. J. Med. Genet. 33, 749–752 (1996).
Article CAS PubMed PubMed Central Google Scholar
Flynn, M. A. & Pauli, R. M. Double heterozygosity in bone growth disorders: Four new observations and review. Am. J. Med. Genet. A. 121A, 193–208 (2003).
Walker, B. A. Hypochondroplasia. Arch. Pediatr. Adolesc. Med. 122, 95 (1971).
Maroteaux, P. & Falzon, P. [Hypochondroplasia. Review of 80 cases]. Arch. Fr. Pediatr. 45, 105–109 (1988).
Motch Perrine, S. M. et al. Embryonic cranial cartilage defects in the Fgfr3 Y367C /+ mouse model of achondroplasia. Anat. Rec. ar.25327 (2023).
Perrine, S. M. M. et al. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Dis. Model. Mech. 12, dmm038513 (2019).
Loisay, L. et al. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice. JCI Insight 8, e168796 (2023).
Article PubMed PubMed Central Google Scholar
Pitirri, M. K. et al. Meckel’s cartilage in mandibular development and dysmorphogenesis. Front. Genet. 13, 871927 (2022).
Article CAS PubMed PubMed Central Google Scholar
Gambari, L., Grigolo, B. & Grassi, F. Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives. Int. J. Mol. Sci. 20, 5231 (2019).
Article CAS PubMed PubMed Central Google Scholar
Su, N. FGF signaling: its role in bone development and human skeleton diseases. Front. Biosci. 13, 2842 (2008).
Article CAS PubMed Google Scholar
Chen, H. et al. PTH 1-34 ameliorates the osteopenia and delayed healing of stabilized tibia fracture in mice with achondroplasia resulting from gain-of-function mutation of FGFR3. Int. J. Biol. Sci. 13, 1254–1265 (2017).
Article CAS PubMed PubMed Central Google Scholar
Julien, A. et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair. Stem Cell Rep. 15, 955–967 (2020).
Cottin, M., Khonsari, R. H. & Friess, M. Assessing cranial plasticity in humans: The impact of artificial deformation on masticatory and basicranial structures. Comptes Rendus Palevol 16, 545–556 (2017). (5-6).
Ferros, I., Mora, M. J., Obeso, I. F., Jimenez, P. & Martinez‐Insua, A. Relationship between the cranial base and the mandible in artificially deformed skulls. Orthod. Craniofac. Res. 19, 222–233 (2016).
Article CAS PubMed Google Scholar
Mugniery, E. et al. An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth. Hum. Mol. Genet. 21, 2503–2513 (2012).
Article CAS PubMed Google Scholar
Hu, K. & Olsen, B. R. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest. 126, 509–526 (2016).
Comments (0)