Role of macrophage in intervertebral disc degeneration

Disease, G. B. D., Injury, I. & Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

Article  Google Scholar 

Yang, S., Zhang, F., Ma, J. & Ding, W. Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. Ageing Res. Rev. 57, 100978 (2020).

Article  PubMed  Google Scholar 

Lawson, L. Y. & Harfe, B. D. Developmental mechanisms of intervertebral disc and vertebral column formation. Wiley Interdiscip. Rev. Dev. Biol. 6, e283 (2017).

Article  Google Scholar 

Dou, Y., Sun, X., Ma, X., Zhao, X. & Yang, Q. Intervertebral disk degeneration: the microenvironment and tissue engineering strategies. Front. Bioeng. Biotechnol. 9, 592118 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hunter, C. J., Matyas, J. R. & Duncan, N. A. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng. 9, 667–677 (2003).

Article  PubMed  Google Scholar 

Frapin, L. et al. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv. drug Deliv. Rev. 149-150, 49–71 (2019).

Article  PubMed  Google Scholar 

Knezevic, N. N., Candido, K. D., Vlaeyen, J. W. S., Van Zundert, J. & Cohen, S. P. Low back pain. Lancet 398, 78–92 (2021).

Article  PubMed  Google Scholar 

Ye, F., Lyu, F. J., Wang, H. & Zheng, Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR spine 5, e1196 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Geiss, A., Larsson, K., Rydevik, B., Takahashi, I. & Olmarker, K. Autoimmune properties of nucleus pulposus: an experimental study in pigs. Spine (Philos. Pa 1976) 32, 168–173 (2007).

Article  Google Scholar 

Naylor, A. et al. Enzymic and immunological activity in the intervertebral disk. Orthop. Clin. North Am. 6, 51–58 (1975).

Article  PubMed  Google Scholar 

Cunha, C. et al. The inflammatory response in the regression of lumbar disc herniation. Arthritis Res. Ther. 20, 251 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Koroth, J. et al. Macrophages and intervertebral disc degeneration. Int. J. Mol. Sci. 24, 1367 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Djuric, N. et al. Lumbar disc extrusions reduce faster than bulging discs due to an active role of macrophages in sciatica. Acta Neurochir. (Wien.) 162, 79–85 (2020).

Article  PubMed  Google Scholar 

Han, F. et al. Targeting endogenous reactive oxygen species removal and regulating regenerative microenvironment at annulus fibrosus defects promote tissue repair. ACS Nano 17, 7645–7661 (2023).

Article  PubMed  Google Scholar 

Yamagishi, A., Nakajima, H., Kokubo, Y., Yamamoto, Y. & Matsumine, A. Polarization of infiltrating macrophages in the outer annulus fibrosus layer associated with the process of intervertebral disc degeneration and neural ingrowth in the human cervical spine. Spine J. 22, 877–886 (2022).

Article  PubMed  Google Scholar 

Yamamoto, Y. et al. Distribution and polarization of hematogenous macrophages associated with the progression of intervertebral disc degeneration. Spine (Philos. Pa 1976) 47, E149–e158 (2022).

Article  Google Scholar 

Wang, Y. et al. Osteopontin deficiency promotes cartilaginous endplate degeneration by enhancing the NF-κB signaling to recruit macrophages and activate the NLRP3 inflammasome. Bone Res 12, 53 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Fan, Y. et al. Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice. Nat. Commun. 15, 2939 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Porcuna, J., Menéndez-Gutiérrez, M. P. & Ricote, M. Molecular control of tissue-resident macrophage identity by nuclear receptors. Curr. Opin. Pharm. 53, 27–34 (2020).

Article  Google Scholar 

Burt, K. G., Kim, M. K. M., Viola, D. C., Abraham, A. C. & Chahine, N. O. Nuclear factor κB overactivation in the intervertebral disc leads to macrophage recruitment and severe disc degeneration. Sci. Adv. 10, eadj3194 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Chen, F. et al. Serglycin secreted by late-stage nucleus pulposus cells is a biomarker of intervertebral disc degeneration. Nat. Commun. 15, 47 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Zhao, X. et al. Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages. J. Nanobiotechnol. 21, 317 (2023).

Article  Google Scholar 

Yokozeki, Y. et al. Reduced TGF-β expression and CD206-positive resident macrophages in the intervertebral discs of aged mice. Biomed. Res. Int. 2021, 7988320 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kawakubo, A. et al. Origin of M2 Mϕ and its macrophage polarization by TGF-β in a mice intervertebral injury model. Int. J. Immunopathol. Pharm. 36, 3946320221103792 (2022).

Article  Google Scholar 

Gao, X. W. et al. CX3CL1/CX3CR1 axis alleviates inflammation and apoptosis in human nucleus pulpous cells via M2 macrophage polarization. Exp. Ther. Med. 26, 359 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Chen, S. et al. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target Ther. 8, 207 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Bosco, M. C. Macrophage polarization: reaching across the aisle? J. Allergy Clin. Immunol. 143, 1348–1350 (2019).

Article  PubMed  Google Scholar 

Li, M. et al. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (2020) 4, e349 (2023).

Article  PubMed  Google Scholar 

Li, Y. & Liu, T. M. Discovering macrophage functions using in vivo optical imaging techniques. Front. Immunol. 9, 502 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Woertgen, C., Rothoerl, R. D. & Brawanski, A. Influence of macrophage infiltration of herniated lumbar disc tissue on outcome after lumbar disc surgery. Spine (Philos. Pa 1976) 25, 871–875 (2000).

Article  Google Scholar 

Khan, N. M., Diaz-Hernandez, M. E., Presciutti, S. M. & Drissi, H. Network analysis identifies gene regulatory network indicating the role of RUNX1 in human intervertebral disc degeneration. Genes (Basel) 11, 771 (2020).

Article  PubMed  Google Scholar 

Haro, H. et al. Upregulated expression of chemokines in herniated nucleus pulposus resorption. Spine (Philos. Pa 1976) 21, 1647–1652 (1996).

Article  Google Scholar 

Kawaguchi, S. et al. Chemokine profile of herniated intervertebral discs infiltrated with monocytes and macrophages. Spine (Philos. Pa 1976) 27, 1511–1516 (2002).

Article  Google Scholar 

Nakawaki, M. et al. Changes in nerve growth factor expression and macrophage phenotype following intervertebral disc injury in mice. J. Orthop. Res. Publ. Orthop. Res. Soc. 37, 1798–1804 (2019).

Article  Google Scholar 

Jin, L. et al. Heterogeneous macrophages contribute to the pathology of disc herniation induced radiculopathy. Spine J. 22, 677–689 (2022).

Article  PubMed  Google Scholar 

Nakazawa, K. R. et al. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 18, 343–356 (2018).

Article  PubMed  Google Scholar 

Ling, Z. et al. Single-cell RNA-Seq analysis reveals macrophage involved in the progression of human intervertebral disc degeneration. Front. Cell Dev. Biol. 9, 833420 (2021).

Article 

Comments (0)

No login
gif