Magnetic resonance imaging of renal oxygenation

Brezis, M. & Rosen, S. Hypoxia of the renal medulla-its implications for disease. N. Engl. J. Med. 332, 647–655 (1995).

Article  CAS  PubMed  Google Scholar 

Evans, R. G. et al. Haemodynamic influences on kidney oxygenation: the clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 40, 106–122 (2013).

Article  CAS  PubMed  Google Scholar 

Evans, R. G., Smith, D. W., Lee, C. J., Ngo, J. P. & Gardiner, B. S. What makes the kidney susceptible to hypoxia? Anat. Rec. 303, 2544–2552 (2020).

Article  CAS  Google Scholar 

Cantow, K. et al. Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts. Methods Mol. Biol. 2216, 89–107 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bane, O. et al. Renal MRI: from nephron to NMR signal. J. Magn. Reson. Imaging 58, 1660–1679 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Edwards, A. & Kurtcuoglu, V. Renal blood flow and oxygenation. Pflug. Arch. 474, 759–770 (2022).

Article  CAS  Google Scholar 

Seeliger, E., Sendeski, M., Rihal, C. S. & Persson, P. B. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur. Heart J. 33, 2007–2015 (2012).

Article  PubMed  Google Scholar 

Shu, S. et al. Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cells 8, 207 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hultstrom, M., Becirovic-Agic, M. & Jonsson, S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol. Genomics 50, 127–141 (2018).

Article  PubMed  Google Scholar 

Calzavacca, P., Evans, R. G., Bailey, M., Bellomo, R. & May, C. N. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit. Care Med. 43, e431–e439 (2015).

Article  CAS  PubMed  Google Scholar 

Ma, S. et al. Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation 26, e12483 (2019).

Article  PubMed  Google Scholar 

Fahling, M. et al. Cyclosporin a induces renal episodic hypoxia. Acta Physiol. 219, 625–639 (2017).

Article  CAS  Google Scholar 

Jensen, A. M., Norregaard, R., Topcu, S. O., Frokiaer, J. & Pedersen, M. Oxygen tension correlates with regional blood flow in obstructed rat kidney. J. Exp. Biol. 212, 3156–3163 (2009).

Article  CAS  PubMed  Google Scholar 

Gardiner, B. S., Smith, D. W., Lee, C. J., Ngo, J. P. & Evans, R. G. Renal oxygenation: from data to insight. Acta Physiol. 228, e13450 (2020).

Article  CAS  Google Scholar 

Scholz, H. et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat. Rev. Nephrol. 17, 335–349 (2021).

Article  CAS  PubMed  Google Scholar 

Molitoris, B. A. Low-flow acute kidney injury: the pathophysiology of prerenal azotemia, abdominal compartment syndrome, and obstructive uropathy. Clin. J. Am. Soc. Nephrol. 17, 1039–1049 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirakawa, Y., Tanaka, T. & Nangaku, M. Renal hypoxia in CKD; pathophysiology and detecting methods. Front. Physiol. 8, 99 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeh, T. H., Tu, K. C., Wang, H. Y. & Chen, J. Y. From acute to chronic: unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease. Int. J. Mol. Sci. 25, 1755 (2024).

Tanaka, S., Tanaka, T. & Nangaku, M. Hypoxia as a key player in the AKI-to-CKD transition. Am. J. Physiol. Renal Physiol. 307, F1187–F1195 (2014).

Article  CAS  PubMed  Google Scholar 

Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

Article  CAS  PubMed  Google Scholar 

Zuk, A. & Bonventre, J. V. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 28, 397–405 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Evans, R. G., Ow, C. P. & Bie, P. The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am. J. Physiol. Renal Physiol. 308, F101–F102 (2015).

Article  CAS  PubMed  Google Scholar 

dos Santos, E. A., Li, L. P., Ji, L. & Prasad, P. V. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest. Radiol. 42, 157–162 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Calvin, A. D., Misra, S. & Pflueger, A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat. Rev. Nephrol. 6, 679–688 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Hansell, P., Welch, W. J., Blantz, R. C. & Palm, F. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin. Exp. Pharmacol. Physiol. 40, 123–137 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).

Article  CAS  PubMed  Google Scholar 

Sato, Y. & Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Renal Physiol. 315, F1501–f1512 (2018).

Article  CAS  PubMed  Google Scholar 

Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).

Article  CAS  PubMed  Google Scholar 

Porrini, E. et al. Estimated GFR: time for a critical appraisal. Nat. Rev. Nephrol. 15, 177–190 (2019).

Article  CAS  PubMed  Google Scholar 

Hinze, C. & Schmidt-Ott, K. M. Acute kidney injury biomarkers in the single-cell transcriptomic era. Am. J. Physiol. Cell Physiol. 323, C1430–C1443 (2022).

Article  CAS  PubMed  Google Scholar 

Fähling, M., Seeliger, E., Patzak, A. & Persson, P. B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol. 13, 169–180 (2017).

Article  PubMed  Google Scholar 

van Duijl, T. T., Soonawala, D., de Fijter, J. W., Ruhaak, L. R. & Cobbaert, C. M. Rational selection of a biomarker panel targeting unmet clinical needs in kidney injury. Clin. Proteom. 18, 10 (2021).

Article  Google Scholar 

Liss, P., Nygren, A., Revsbech, N. P. & Ulfendahl, H. R. Measurements of oxygen tension in the rat kidney after contrast media using an oxygen microelectrode with a guard cathode. Adv. Exp. Med. Biol. 411, 569–576 (1997).

Comments (0)

No login
gif