Brezis, M. & Rosen, S. Hypoxia of the renal medulla-its implications for disease. N. Engl. J. Med. 332, 647–655 (1995).
Article CAS PubMed Google Scholar
Evans, R. G. et al. Haemodynamic influences on kidney oxygenation: the clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 40, 106–122 (2013).
Article CAS PubMed Google Scholar
Evans, R. G., Smith, D. W., Lee, C. J., Ngo, J. P. & Gardiner, B. S. What makes the kidney susceptible to hypoxia? Anat. Rec. 303, 2544–2552 (2020).
Cantow, K. et al. Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts. Methods Mol. Biol. 2216, 89–107 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bane, O. et al. Renal MRI: from nephron to NMR signal. J. Magn. Reson. Imaging 58, 1660–1679 (2023).
Article PubMed PubMed Central Google Scholar
Edwards, A. & Kurtcuoglu, V. Renal blood flow and oxygenation. Pflug. Arch. 474, 759–770 (2022).
Seeliger, E., Sendeski, M., Rihal, C. S. & Persson, P. B. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur. Heart J. 33, 2007–2015 (2012).
Shu, S. et al. Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cells 8, 207 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hultstrom, M., Becirovic-Agic, M. & Jonsson, S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol. Genomics 50, 127–141 (2018).
Calzavacca, P., Evans, R. G., Bailey, M., Bellomo, R. & May, C. N. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit. Care Med. 43, e431–e439 (2015).
Article CAS PubMed Google Scholar
Ma, S. et al. Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation 26, e12483 (2019).
Fahling, M. et al. Cyclosporin a induces renal episodic hypoxia. Acta Physiol. 219, 625–639 (2017).
Jensen, A. M., Norregaard, R., Topcu, S. O., Frokiaer, J. & Pedersen, M. Oxygen tension correlates with regional blood flow in obstructed rat kidney. J. Exp. Biol. 212, 3156–3163 (2009).
Article CAS PubMed Google Scholar
Gardiner, B. S., Smith, D. W., Lee, C. J., Ngo, J. P. & Evans, R. G. Renal oxygenation: from data to insight. Acta Physiol. 228, e13450 (2020).
Scholz, H. et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat. Rev. Nephrol. 17, 335–349 (2021).
Article CAS PubMed Google Scholar
Molitoris, B. A. Low-flow acute kidney injury: the pathophysiology of prerenal azotemia, abdominal compartment syndrome, and obstructive uropathy. Clin. J. Am. Soc. Nephrol. 17, 1039–1049 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hirakawa, Y., Tanaka, T. & Nangaku, M. Renal hypoxia in CKD; pathophysiology and detecting methods. Front. Physiol. 8, 99 (2017).
Article PubMed PubMed Central Google Scholar
Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).
Article CAS PubMed PubMed Central Google Scholar
Yeh, T. H., Tu, K. C., Wang, H. Y. & Chen, J. Y. From acute to chronic: unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease. Int. J. Mol. Sci. 25, 1755 (2024).
Tanaka, S., Tanaka, T. & Nangaku, M. Hypoxia as a key player in the AKI-to-CKD transition. Am. J. Physiol. Renal Physiol. 307, F1187–F1195 (2014).
Article CAS PubMed Google Scholar
Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).
Article CAS PubMed Google Scholar
Zuk, A. & Bonventre, J. V. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 28, 397–405 (2019).
Article PubMed PubMed Central Google Scholar
Evans, R. G., Ow, C. P. & Bie, P. The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am. J. Physiol. Renal Physiol. 308, F101–F102 (2015).
Article CAS PubMed Google Scholar
dos Santos, E. A., Li, L. P., Ji, L. & Prasad, P. V. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest. Radiol. 42, 157–162 (2007).
Article PubMed PubMed Central Google Scholar
Calvin, A. D., Misra, S. & Pflueger, A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat. Rev. Nephrol. 6, 679–688 (2010).
Article PubMed PubMed Central Google Scholar
Hansell, P., Welch, W. J., Blantz, R. C. & Palm, F. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin. Exp. Pharmacol. Physiol. 40, 123–137 (2013).
Article CAS PubMed PubMed Central Google Scholar
DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).
Article CAS PubMed Google Scholar
Sato, Y. & Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Renal Physiol. 315, F1501–f1512 (2018).
Article CAS PubMed Google Scholar
Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).
Article CAS PubMed Google Scholar
Porrini, E. et al. Estimated GFR: time for a critical appraisal. Nat. Rev. Nephrol. 15, 177–190 (2019).
Article CAS PubMed Google Scholar
Hinze, C. & Schmidt-Ott, K. M. Acute kidney injury biomarkers in the single-cell transcriptomic era. Am. J. Physiol. Cell Physiol. 323, C1430–C1443 (2022).
Article CAS PubMed Google Scholar
Fähling, M., Seeliger, E., Patzak, A. & Persson, P. B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol. 13, 169–180 (2017).
van Duijl, T. T., Soonawala, D., de Fijter, J. W., Ruhaak, L. R. & Cobbaert, C. M. Rational selection of a biomarker panel targeting unmet clinical needs in kidney injury. Clin. Proteom. 18, 10 (2021).
Liss, P., Nygren, A., Revsbech, N. P. & Ulfendahl, H. R. Measurements of oxygen tension in the rat kidney after contrast media using an oxygen microelectrode with a guard cathode. Adv. Exp. Med. Biol. 411, 569–576 (1997).
Comments (0)