Drivers and mechanisms of cognitive decline in chronic kidney disease

GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

Article  Google Scholar 

Viggiano, D. et al. Mechanisms of cognitive dysfunction in CKD. Nat. Rev. Nephrol. 16, 452–469 (2020).

Article  PubMed  Google Scholar 

de Boer, A. et al. Consensus-based technical recommendations for clinical translation of renal phase contrast MRI. J. Magn. Reson. Imaging 55, 323–335 (2022).

Article  PubMed  Google Scholar 

Wikoff, W. R., Nagle, M. A., Kouznetsova, V. L., Tsigelny, I. F. & Nigam, S. K. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J. Proteome Res. 10, 2842–2851 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosner, M. H. et al. Classification of uremic toxins and their role in kidney failure. Clin. J. Am. Soc. Nephrol. 16, 1918–1928 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perna, A. F. et al. Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int. 69, 869–876 (2006).

Article  CAS  PubMed  Google Scholar 

Karbowska, M. et al. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model. Sci. Rep. 10, 9483 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wulczyn, K. E. et al. Metabolites associated with uremic symptoms in patients with CKD: findings from the chronic renal insufficiency cohort (CRIC) study. Am. J. Kidney Dis. 84, 49–61.e1 (2024).

Article  CAS  PubMed  Google Scholar 

Al Awadhi, S. et al. A metabolomics approach to identify metabolites associated with mortality in patients receiving maintenance hemodialysis. Kidney Int. Rep. 9, 2718–2726 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Xu, S. et al. Cognitive impairment in chronic kidney disease is associated with glymphatic system dysfunction. Kidney Dis. 9, 384–397 (2023).

Article  Google Scholar 

Kelly, D. M. et al. Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham Heart Study. Nephrol. Dial. Transpl. 39, 1911–1922 (2024).

Article  CAS  Google Scholar 

Pépin, M. et al. Cognitive disorders in patients with chronic kidney disease: approaches to prevention and treatment. Eur. J. Neurol. 30, 2899–2911 (2023).

Article  PubMed  Google Scholar 

De Deyn, P. P., Vanholder, R., Eloot, S. & Glorieux, G. Guanidino compounds as uremic (neuro)toxins. Semin. Dial. 22, 340–345 (2009).

Article  PubMed  Google Scholar 

Meera, P., Uusi-Oukari, M., Wallner, M. & Lipshutz, G. S. Guanidinoacetate (GAA) is a potent GABAA receptor GABA mimetic: implications for neurological disease pathology. J. Neurochem. 165, 445–454 (2023).

Article  CAS  PubMed  Google Scholar 

Greenfield, L. J. Jr. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 22, 589–600 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Yeh, Y. C. et al. Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. Neurotoxicology 53, 148–152 (2016).

Article  CAS  PubMed  Google Scholar 

Jeong, S. H. et al. Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes. Kidney Res. Clin. Pract. 43, 774–784 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Sato, E. et al. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins https://doi.org/10.3390/toxins10010019 (2017).

Faucher, Q., van der Made, T. K., De Lange, E. & Masereeuw, R. Blood–brain barrier perturbations by uremic toxins: key contributors in chronic kidney disease-induced neurological disorders? Eur. J. Pharm. Sci. 187, 106462 (2023).

Article  CAS  PubMed  Google Scholar 

Chai, G. S. et al. H3K4 trimethylation mediate hyperhomocysteinemia induced neurodegeneration via suppressing histone acetylation by ANP32A. Mol. Neurobiol. 61, 6788–6804 (2024).

Article  CAS  PubMed  Google Scholar 

Ingrosso, D. & Perna, A. F. DNA methylation dysfunction in chronic kidney disease. Genes https://doi.org/10.3390/genes11070811 (2020).

Perna, A. F. et al. Plasma protein aspartyl damage is increased in hemodialysis patients: studies on causes and consequences. J. Am. Soc. Nephrol. 15, 2747–2754 (2004).

Article  CAS  PubMed  Google Scholar 

Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, D. et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 17, e12768 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Morrens, M. The role of the kynurenine pathway in cognitive function in brain disorders: insights and challenges. Brain Behav. Immun. 127, 110–111 (2025).

Article  CAS  PubMed  Google Scholar 

Deora, G. S. et al. Multifunctional analogs of kynurenic acid for the treatment of Alzheimer’s disease: synthesis, pharmacology, and molecular modeling studies. ACS Chem. Neurosci. 8, 2667–2675 (2017).

Article  CAS  PubMed  Google Scholar 

Szabo, N., Kincses, Z. T., Toldi, J. & Vecsei, L. Altered tryptophan metabolism in Parkinson’s disease: a possible novel therapeutic approach. J. Neurol. Sci. 310, 256–260 (2011).

Article  CAS  PubMed  Google Scholar 

Zadori, D. et al. Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J. Neural Transm. 118, 865–875 (2011).

Article  CAS  PubMed  Google Scholar 

Fukui, S., Schwarcz, R., Rapoport, S. I., Takada, Y. & Smith, Q. R. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56, 2007–2017 (1991).

Article  CAS  PubMed  Google Scholar 

Vezzani, A. et al. Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood–brain barrier permeability. Exp. Neurol. 106, 90–98 (1989).

Article  CAS  PubMed  Google Scholar 

Rahman, A. et al. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE 4, e6344 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Köhler, C. et al. Quinolinic acid metabolism in the rat brain. Immunohistochemical identification of 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase in the hippocampal region. J. Neurosci. 8, 975–987 (1988).

Article  PubMed  PubMed Central  Google Scholar 

Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly, D. M. et al. Chronic kidney disease and cerebrovascular disease: consensus and guidance from a KDIGO controversies conference. Stroke 52, e328–e346 (2021).

Comments (0)

No login
gif