The intelligent podocyte: sensing and responding to a complex microenvironment

Kikuchi, M., Wickman, L., Rabah, R. & Wiggins, R. C. Podocyte number and density changes during early human life. Pediat. Nephrol. 32, 823–834 (2017).

Article  PubMed  Google Scholar 

Puelles, V. G. et al. Human podocyte depletion in association with older age and hypertension. Am. J. Physiol. Ren. Physiol. 310, F656–F668 (2016).

Article  CAS  Google Scholar 

Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediat. Nephrol. 26, 1529–1533 (2011).

Article  PubMed  Google Scholar 

Rodewald, R. & Karnovsky, M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J. Cell Biol. 60, 423–433 (1974).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiggins, R.-C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

Article  CAS  PubMed  Google Scholar 

Huang, Y. et al. Extracellular vesicles from high glucose-treated podocytes induce apoptosis of proximal tubular epithelial cells. Front. Physiol. 11, 579296 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, L. et al. Synergistic effect of mesangial cell-induced CXCL1 and TGF-β1 in promoting podocyte loss in IgA nephropathy. PLoS ONE 8, e73425 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gujarati, N. A. et al. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat. Commun. 15, 8038 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasegawa, K. et al. Communication from tubular epithelial cells to podocytes through Sirt1 and nicotinic acid metabolism. Curr. Hypertens. Rev. 12, 95–104 (2016).

Article  CAS  PubMed  Google Scholar 

Ebefors, K., Bergwall, L. & Nyström, J. The glomerulus according to the mesangium. Front. Med. 8, 740527 (2022).

Article  Google Scholar 

Lu, C.-C. et al. Role of podocyte injury in glomerulosclerosis. Adv. Exp. Med. Biol. 1165, 195–232 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).

Article  PubMed  Google Scholar 

van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 9, 1960 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Boyer, O. et al. INF2 mutations in Charcot–Marie–Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

Article  CAS  PubMed  Google Scholar 

Saminathan, A., Zajac, M., Anees, P. & Krishnan, Y. Organelle-level precision with next-generation targeting technologies. Nat. Rev. Mater. 7, 355–371 (2021).

Article  Google Scholar 

Huang, J., Meng, P., Wang, C., Zhang, Y. & Zhou, L. The relevance of organelle interactions in cellular senescence. Theranostics 12, 2445–2464 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y.-P. & Lei, Q.-Y. Metabolite sensing and signaling in cell metabolism. Signal. Transduct. Target. Ther. 3, 30 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Hu, S. et al. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun. Signal. 22, 136 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Jiang, H. et al. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front. Immunol. 14, 1335936 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Tu, Y.-C. et al. The physiopathologic roles of calcium signaling in podocytes. Front. Biosci. 28, 240 (2023).

Article  CAS  Google Scholar 

Staruschenko, A., Ma, R., Palygin, O. & Dryer, S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 103, 787–854 (2023).

Article  CAS  PubMed  Google Scholar 

Coward, R. J. M. et al. The human glomerular podocyte is a novel target for insulin action. Diabetes 54, 3095–3102 (2005).

Article  CAS  PubMed  Google Scholar 

Audzeyenka, I., Rachubik, P., Rogacka, D., Saleem, M. A. & Piwkowska, A. Insulin induces bioenergetic changes and alters mitochondrial dynamics in podocytes. J. Endocrinol. 261, e230357 (2024).

Article  CAS  PubMed  Google Scholar 

Fornoni, A., Merscher, S. & Kopp, J. B. Lipid biology of the podocyte — new perspectives offer new opportunities. Nat. Rev. Nephrol. 10, 379–388 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knol, M. G. E., Wulfmeyer, V. C., Müller, R.-U. & Rinschen, M. M. Amino acid metabolism in kidney health and disease. Nat. Rev. Nephrol. 20, 771–788 (2024).

Article  CAS  PubMed  Google Scholar 

Sekine, Y. et al. Amino acid transporter LAT3 is required for podocyte development and function. J. Am. Soc. Nephrol. 20, 1586–1596 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab. Invest. 91, 992–1006 (2011).

Article  CAS  PubMed  Google Scholar 

Du, H. et al. MiR-29b alleviates high glucose-induced inflammation and apoptosis in podocytes by down-regulating PRKAB2. Endocr. Metab. Immune Disord. Drug Targ. 24, 981–990 (2024).

Article  CAS  Google Scholar 

Qu, H. et al. Dock5 deficiency promotes proteinuric kidney diseases via modulating podocyte lipid metabolism. Adv. Sci. 11, e2306365 (2024).

Article  Google Scholar 

Jacobo-Albavera, L., Domínguez-Pérez, M., Medina-Leyte, D. J., González-Garrido, A. & Villarreal-Molina, T. The role of the ATP-binding cassette A1 (ABCA1) in human disease. Int. J. Mol. Sci. 22, 1593 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo, F. et al. CCDC92 promotes podocyte injury by regulating PA28α/ABCA1/cholesterol efflux axis in type 2 diabetic mice. Acta Pharmacol. Sin. 45, 1019–1031 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo, F. et al. CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease. Metabolism 150, 155724 (2024).

Article  CAS 

Comments (0)

No login
gif