Kikuchi, M., Wickman, L., Rabah, R. & Wiggins, R. C. Podocyte number and density changes during early human life. Pediat. Nephrol. 32, 823–834 (2017).
Puelles, V. G. et al. Human podocyte depletion in association with older age and hypertension. Am. J. Physiol. Ren. Physiol. 310, F656–F668 (2016).
Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediat. Nephrol. 26, 1529–1533 (2011).
Rodewald, R. & Karnovsky, M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J. Cell Biol. 60, 423–433 (1974).
Article CAS PubMed PubMed Central Google Scholar
Wiggins, R.-C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).
Article CAS PubMed Google Scholar
Huang, Y. et al. Extracellular vesicles from high glucose-treated podocytes induce apoptosis of proximal tubular epithelial cells. Front. Physiol. 11, 579296 (2020).
Article PubMed PubMed Central Google Scholar
Zhu, L. et al. Synergistic effect of mesangial cell-induced CXCL1 and TGF-β1 in promoting podocyte loss in IgA nephropathy. PLoS ONE 8, e73425 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gujarati, N. A. et al. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat. Commun. 15, 8038 (2024).
Article CAS PubMed PubMed Central Google Scholar
Hasegawa, K. et al. Communication from tubular epithelial cells to podocytes through Sirt1 and nicotinic acid metabolism. Curr. Hypertens. Rev. 12, 95–104 (2016).
Article CAS PubMed Google Scholar
Ebefors, K., Bergwall, L. & Nyström, J. The glomerulus according to the mesangium. Front. Med. 8, 740527 (2022).
Lu, C.-C. et al. Role of podocyte injury in glomerulosclerosis. Adv. Exp. Med. Biol. 1165, 195–232 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).
van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).
Article PubMed PubMed Central Google Scholar
Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 9, 1960 (2018).
Article PubMed PubMed Central Google Scholar
Boyer, O. et al. INF2 mutations in Charcot–Marie–Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).
Article CAS PubMed Google Scholar
Saminathan, A., Zajac, M., Anees, P. & Krishnan, Y. Organelle-level precision with next-generation targeting technologies. Nat. Rev. Mater. 7, 355–371 (2021).
Huang, J., Meng, P., Wang, C., Zhang, Y. & Zhou, L. The relevance of organelle interactions in cellular senescence. Theranostics 12, 2445–2464 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y.-P. & Lei, Q.-Y. Metabolite sensing and signaling in cell metabolism. Signal. Transduct. Target. Ther. 3, 30 (2018).
Article PubMed PubMed Central Google Scholar
Hu, S. et al. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun. Signal. 22, 136 (2024).
Article PubMed PubMed Central Google Scholar
Jiang, H. et al. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front. Immunol. 14, 1335936 (2024).
Article PubMed PubMed Central Google Scholar
Tu, Y.-C. et al. The physiopathologic roles of calcium signaling in podocytes. Front. Biosci. 28, 240 (2023).
Staruschenko, A., Ma, R., Palygin, O. & Dryer, S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 103, 787–854 (2023).
Article CAS PubMed Google Scholar
Coward, R. J. M. et al. The human glomerular podocyte is a novel target for insulin action. Diabetes 54, 3095–3102 (2005).
Article CAS PubMed Google Scholar
Audzeyenka, I., Rachubik, P., Rogacka, D., Saleem, M. A. & Piwkowska, A. Insulin induces bioenergetic changes and alters mitochondrial dynamics in podocytes. J. Endocrinol. 261, e230357 (2024).
Article CAS PubMed Google Scholar
Fornoni, A., Merscher, S. & Kopp, J. B. Lipid biology of the podocyte — new perspectives offer new opportunities. Nat. Rev. Nephrol. 10, 379–388 (2014).
Article CAS PubMed PubMed Central Google Scholar
Knol, M. G. E., Wulfmeyer, V. C., Müller, R.-U. & Rinschen, M. M. Amino acid metabolism in kidney health and disease. Nat. Rev. Nephrol. 20, 771–788 (2024).
Article CAS PubMed Google Scholar
Sekine, Y. et al. Amino acid transporter LAT3 is required for podocyte development and function. J. Am. Soc. Nephrol. 20, 1586–1596 (2009).
Article CAS PubMed PubMed Central Google Scholar
Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab. Invest. 91, 992–1006 (2011).
Article CAS PubMed Google Scholar
Du, H. et al. MiR-29b alleviates high glucose-induced inflammation and apoptosis in podocytes by down-regulating PRKAB2. Endocr. Metab. Immune Disord. Drug Targ. 24, 981–990 (2024).
Qu, H. et al. Dock5 deficiency promotes proteinuric kidney diseases via modulating podocyte lipid metabolism. Adv. Sci. 11, e2306365 (2024).
Jacobo-Albavera, L., Domínguez-Pérez, M., Medina-Leyte, D. J., González-Garrido, A. & Villarreal-Molina, T. The role of the ATP-binding cassette A1 (ABCA1) in human disease. Int. J. Mol. Sci. 22, 1593 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zuo, F. et al. CCDC92 promotes podocyte injury by regulating PA28α/ABCA1/cholesterol efflux axis in type 2 diabetic mice. Acta Pharmacol. Sin. 45, 1019–1031 (2024).
Article CAS PubMed PubMed Central Google Scholar
Zuo, F. et al. CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease. Metabolism 150, 155724 (2024).
Comments (0)