Hong, G. S. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bouchez, D., Uyttewaal, M. & Pastuglia, M. Spatiotemporal regulation of plant cell division. Curr. Opin. Plant Biol. 79, 102530 (2024).
Ren, J. Y., Luo, S. C., Shi, H. L. & Wang, X. Spatial omics advances for in situ RNA biology. Mol. Cell 84, 3737–3757 (2024).
Article CAS PubMed Google Scholar
Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).
Article CAS PubMed Google Scholar
Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).
Article CAS PubMed PubMed Central Google Scholar
Choi, J., Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).
Article PubMed PubMed Central Google Scholar
Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, 648 (2019).
Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).
Zhao, Y. L. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).
Article CAS PubMed Google Scholar
Duan, X. J. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).
Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).
Article CAS PubMed PubMed Central Google Scholar
Tian, B. Z. & Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013).
Gu, Y. et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).
Article CAS PubMed Google Scholar
Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017).
Article CAS PubMed Google Scholar
Feng, J. D. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070 (2015).
Article CAS PubMed Google Scholar
Lee, Y. H. et al. Carbon-nanotube field-effect transistors for resolving single-molecule aptamer-ligand binding kinetics. Nat. Nanotechnol. 19, 660–667 (2024).
Article CAS PubMed PubMed Central Google Scholar
Laborde, C. et al. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 10, 791–795 (2015).
Article CAS PubMed Google Scholar
Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).
Article CAS PubMed Google Scholar
Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).
Article CAS PubMed Google Scholar
Dipalo, M. et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).
Article CAS PubMed Google Scholar
Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).
Article CAS PubMed Google Scholar
Xie, C., Lin, Z. L., Hanson, L., Cui, Y. & Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).
Article CAS PubMed PubMed Central Google Scholar
Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron. 6, 669–679 (2023).
Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).
Article PubMed PubMed Central Google Scholar
Shekar, S. et al. A miniaturized multi-clamp CMOS amplifier for intracellular neural recording. Nat. Electron. 2, 343–350 (2019).
Article PubMed PubMed Central Google Scholar
Bellin, D. L. et al. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 5, 3256 (2014).
Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).
Article CAS PubMed PubMed Central Google Scholar
Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).
Article CAS PubMed Google Scholar
Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).
Article CAS PubMed Google Scholar
Huffman, B. L., Bredar, A. R. C. & Dempsey, J. L. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat. Rev. Chem. 8, 628–643 (2024).
Article CAS PubMed Google Scholar
Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 125–131 (2011).
Xie, P., Xiong, Q. H., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7, 119–125 (2012).
Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).
Article CAS PubMed Google Scholar
Li, P. J. et al. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 626, 990–998 (2024).
Comments (0)