Materials and device strategies to enhance spatiotemporal resolution in bioelectronics

Hong, G. S. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouchez, D., Uyttewaal, M. & Pastuglia, M. Spatiotemporal regulation of plant cell division. Curr. Opin. Plant Biol. 79, 102530 (2024).

Article  PubMed  Google Scholar 

Ren, J. Y., Luo, S. C., Shi, H. L. & Wang, X. Spatial omics advances for in situ RNA biology. Mol. Cell 84, 3737–3757 (2024).

Article  CAS  PubMed  Google Scholar 

Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).

Article  CAS  PubMed  Google Scholar 

Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, J., Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, 648 (2019).

Article  Google Scholar 

Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).

Article  Google Scholar 

Zhao, Y. L. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).

Article  CAS  PubMed  Google Scholar 

Duan, X. J. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).

Article  CAS  Google Scholar 

Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, B. Z. & Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013).

Article  CAS  Google Scholar 

Gu, Y. et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).

Article  CAS  PubMed  Google Scholar 

Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017).

Article  CAS  PubMed  Google Scholar 

Feng, J. D. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070 (2015).

Article  CAS  PubMed  Google Scholar 

Lee, Y. H. et al. Carbon-nanotube field-effect transistors for resolving single-molecule aptamer-ligand binding kinetics. Nat. Nanotechnol. 19, 660–667 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laborde, C. et al. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 10, 791–795 (2015).

Article  CAS  PubMed  Google Scholar 

Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).

Article  CAS  PubMed  Google Scholar 

Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).

Article  CAS  PubMed  Google Scholar 

Dipalo, M. et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).

Article  CAS  PubMed  Google Scholar 

Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).

Article  CAS  PubMed  Google Scholar 

Xie, C., Lin, Z. L., Hanson, L., Cui, Y. & Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron. 6, 669–679 (2023).

Article  CAS  Google Scholar 

Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Shekar, S. et al. A miniaturized multi-clamp CMOS amplifier for intracellular neural recording. Nat. Electron. 2, 343–350 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bellin, D. L. et al. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 5, 3256 (2014).

Article  PubMed  Google Scholar 

Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

Article  CAS  PubMed  Google Scholar 

Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

Article  CAS  PubMed  Google Scholar 

Huffman, B. L., Bredar, A. R. C. & Dempsey, J. L. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat. Rev. Chem. 8, 628–643 (2024).

Article  CAS  PubMed  Google Scholar 

Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 125–131 (2011).

Article  Google Scholar 

Xie, P., Xiong, Q. H., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7, 119–125 (2012).

Article  CAS  Google Scholar 

Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

Article  CAS  PubMed  Google Scholar 

Li, P. J. et al. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 626, 990–998 (2024).

Comments (0)

No login
gif