Plasmonic lattice lasers

Gordon, J. P., Zeiger, H. J. & Townes, C. H. The maser — new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99, 1264–1274 (1955).

Article  CAS  Google Scholar 

Campbell, C. J. Ruby laser prototype. Columbia University https://www.vagelos.columbia.edu/departments-centers/ophthalmology/about-us/our-history/collections/ruby-laser-prototype (1961).

Schwartz, M. I., Reenstra, W. A., Mullins, J. H. & Cook, J. S. Atlanta fiber system experiment: the Chicago Lightwave Communications Project. Bell Syst. Tech. J. 57, 1881–1888 (1978).

Article  Google Scholar 

Weightman, G. The history of the bar code. Smithsonian Magazine https://www.smithsonianmag.com/innovation/history-bar-code-180956704/ (2015).

Lotsch, H. K. V. et al. VCSELs Vol. 166 (Springer, 2013).

Chen, Q. et al. Highly efficient vortex generation at the nanoscale. Nat. Nanotechnol. 19, 1000–1006 (2024).

Article  PubMed  CAS  Google Scholar 

Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photon. 14, 102–108 (2020).

Article  CAS  Google Scholar 

Liu, X., Li, A., Jiang, X., Yang, H. & Li, Y. Cascaded-prism multi-mode beam scanning method for three-dimensional imaging lidar. Appl. Opt. 63, 5670 (2024).

Article  Google Scholar 

Schwarz, B. Mapping the world in 3D. Nat. Photon. 4, 429–430 (2010).

Article  CAS  Google Scholar 

Guan, J. et al. Light-matter interactions in hybrid material metasurfaces. Chem. Rev. 122, 15177–15203 (2022).

Article  PubMed  CAS  Google Scholar 

Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photon. Rev. 16, 2100633 (2022).

Article  Google Scholar 

Koshelev, K. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photon. 8, 102–112 (2021).

Article  CAS  Google Scholar 

Lončar, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

Article  Google Scholar 

Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

Article  PubMed  CAS  Google Scholar 

Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

Article  CAS  Google Scholar 

Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

Article  PubMed  CAS  Google Scholar 

Ouyang, Y.-H., Luan, H.-Y., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Singular dielectric nanolaser with atomic-scale field localization. Nature 632, 287–293 (2024).

Article  PubMed  CAS  Google Scholar 

Wang, W. et al. The rich photonic world of plasmonic nanoparticle arrays. Mater. Today 21, 303–314 (2018).

Article  Google Scholar 

Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nat. Photon. 2, 351–354 (2008).

Article  CAS  Google Scholar 

Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

Article  PubMed  CAS  Google Scholar 

Markel, V. A. Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B Mol. Opt. Phys. 38, L115–L121 (2005).

Article  CAS  Google Scholar 

Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

Article  PubMed  CAS  Google Scholar 

Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

Article  PubMed  CAS  Google Scholar 

Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

Article  PubMed  CAS  Google Scholar 

Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

Article  PubMed  Google Scholar 

Wang, S. et al. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nat. Commun. 8, 1889 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).

Article  PubMed  CAS  Google Scholar 

Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).

Article  PubMed  CAS  Google Scholar 

Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C. & Duyne, R. P. V. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007).

Article  CAS  Google Scholar 

Freire-Fernández, F., Kataja, M. & van Dijken, S. Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays. Nanophotonics 9, 113–121 (2019).

Article  Google Scholar 

Freire-Fernández, F., Mansell, R. & Dijken, S. V. Magnetoplasmonic properties of perpendicularly magnetized [Co/Pt]N nanodots. Phys. Rev. B 101, 054416 (2020).

Article  Google Scholar 

Rawashdeh, A., Lupa, S., Welch, W. & Yang, A. Sodium surface lattice plasmons. J. Phys. Chem. C 125, 25148–25154 (2021).

Article  CAS  Google Scholar 

Juarez, X. G. et al. Chiral optical properties of plasmonic kagome lattices. ACS Photon. 11, 673–681 (2024).

Article  CAS  Google Scholar 

Juarez, X. G. et al. M-point lasing in hexagonal and honeycomb plasmonic lattices. ACS Photon. 9, 52–58 (2022).

Article  CAS  Google Scholar 

Schokker, A. H. & Koenderink, A. F. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 3, 686 (2016).

Article  CAS  Google Scholar 

Yang, A. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 1–7 (2015).

Google Scholar 

Wang, D. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 12, 889–894 (2017).

Article  PubMed  CAS  Google Scholar 

Fernandez-Bravo, A. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18, 1172–1176 (2019).

Article  PubMed  CAS  Google Scholar 

Schokker, A. H. & Koenderink, A. F. Statistics of randomized plasmonic lattice lasers. ACS Photon. 2, 1289–1297 (2015).

Article  CAS  Google Scholar 

Hoang, T. B., Akselrod, G. M., Yang, A., Odom, T. W. & Mikkelsen, M. H. Millimeter-scale spatial coherence from a plasmon laser. Nano Lett. 17, 6690–6695 (2017).

Article  PubMed  CAS 

Comments (0)

No login
gif