Gordon, J. P., Zeiger, H. J. & Townes, C. H. The maser — new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99, 1264–1274 (1955).
Campbell, C. J. Ruby laser prototype. Columbia University https://www.vagelos.columbia.edu/departments-centers/ophthalmology/about-us/our-history/collections/ruby-laser-prototype (1961).
Schwartz, M. I., Reenstra, W. A., Mullins, J. H. & Cook, J. S. Atlanta fiber system experiment: the Chicago Lightwave Communications Project. Bell Syst. Tech. J. 57, 1881–1888 (1978).
Weightman, G. The history of the bar code. Smithsonian Magazine https://www.smithsonianmag.com/innovation/history-bar-code-180956704/ (2015).
Lotsch, H. K. V. et al. VCSELs Vol. 166 (Springer, 2013).
Chen, Q. et al. Highly efficient vortex generation at the nanoscale. Nat. Nanotechnol. 19, 1000–1006 (2024).
Article PubMed CAS Google Scholar
Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photon. 14, 102–108 (2020).
Liu, X., Li, A., Jiang, X., Yang, H. & Li, Y. Cascaded-prism multi-mode beam scanning method for three-dimensional imaging lidar. Appl. Opt. 63, 5670 (2024).
Schwarz, B. Mapping the world in 3D. Nat. Photon. 4, 429–430 (2010).
Guan, J. et al. Light-matter interactions in hybrid material metasurfaces. Chem. Rev. 122, 15177–15203 (2022).
Article PubMed CAS Google Scholar
Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photon. Rev. 16, 2100633 (2022).
Koshelev, K. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photon. 8, 102–112 (2021).
Lončar, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).
Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).
Article PubMed CAS Google Scholar
Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).
Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).
Article PubMed CAS Google Scholar
Ouyang, Y.-H., Luan, H.-Y., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Singular dielectric nanolaser with atomic-scale field localization. Nature 632, 287–293 (2024).
Article PubMed CAS Google Scholar
Wang, W. et al. The rich photonic world of plasmonic nanoparticle arrays. Mater. Today 21, 303–314 (2018).
Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nat. Photon. 2, 351–354 (2008).
Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).
Article PubMed CAS Google Scholar
Markel, V. A. Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B Mol. Opt. Phys. 38, L115–L121 (2005).
Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).
Article PubMed CAS Google Scholar
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).
Article PubMed CAS Google Scholar
Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
Article PubMed CAS Google Scholar
Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Wang, S. et al. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nat. Commun. 8, 1889 (2017).
Article PubMed PubMed Central Google Scholar
Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).
Article PubMed CAS Google Scholar
Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).
Article PubMed CAS Google Scholar
Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C. & Duyne, R. P. V. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007).
Freire-Fernández, F., Kataja, M. & van Dijken, S. Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays. Nanophotonics 9, 113–121 (2019).
Freire-Fernández, F., Mansell, R. & Dijken, S. V. Magnetoplasmonic properties of perpendicularly magnetized [Co/Pt]N nanodots. Phys. Rev. B 101, 054416 (2020).
Rawashdeh, A., Lupa, S., Welch, W. & Yang, A. Sodium surface lattice plasmons. J. Phys. Chem. C 125, 25148–25154 (2021).
Juarez, X. G. et al. Chiral optical properties of plasmonic kagome lattices. ACS Photon. 11, 673–681 (2024).
Juarez, X. G. et al. M-point lasing in hexagonal and honeycomb plasmonic lattices. ACS Photon. 9, 52–58 (2022).
Schokker, A. H. & Koenderink, A. F. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 3, 686 (2016).
Yang, A. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 1–7 (2015).
Wang, D. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 12, 889–894 (2017).
Article PubMed CAS Google Scholar
Fernandez-Bravo, A. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18, 1172–1176 (2019).
Article PubMed CAS Google Scholar
Schokker, A. H. & Koenderink, A. F. Statistics of randomized plasmonic lattice lasers. ACS Photon. 2, 1289–1297 (2015).
Hoang, T. B., Akselrod, G. M., Yang, A., Odom, T. W. & Mikkelsen, M. H. Millimeter-scale spatial coherence from a plasmon laser. Nano Lett. 17, 6690–6695 (2017).
Comments (0)