Biomaterials in cellular agriculture and plant-based foods for the future

Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

Article  Google Scholar 

New Harvest. What is cellular agriculture? New Harvest https://new-harvest.org/what-is-cellular-agriculture (2024).

Bomkamp, C. et al. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Adv. Sci. 9, 2102908 (2022).

Article  CAS  Google Scholar 

Barzee, T. J., Cao, L., Pan, Z. & Zhang, R. Fungi for future foods. J. Future Foods 1, 25–37 (2021).

Article  Google Scholar 

St. Pierre, S. R. et al. The mechanical and sensory signature of plant-based and animal meat. NPJ Sci. Food 8, 94 (2024).

Article  Google Scholar 

Du, C. J. & Sun, D. W. Automatic measurement of pores and porosity in pork ham and their correlations with processing time, water content and texture. Meat Sci. 72, 294–302 (2006).

Article  PubMed  Google Scholar 

Ianovici, I., Zagury, Y., Redenski, I., Lavon, N. & Levenberg, S. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 284, 121487 (2022).

Article  CAS  PubMed  Google Scholar 

Lee, H. et al. Animal-free scaffold from brown algae provides a three-dimensional cell growth and differentiation environment for steak-like cultivated meat. Food Hydrocoll. 152, 109944 (2024).

Article  CAS  Google Scholar 

Jeong, D., Jang, G., Jung, W. K., Park, Y. H. & Bae, H. Stretchable zein-coated alginate fiber for aligning muscle cells to artificially produce cultivated meat. NPJ Sci. Food 8, 13 (2024).

Article  PubMed Central  PubMed  Google Scholar 

Feng, S. et al. Soy conglycinin amyloid fibril and chitosan complex scaffold for cultivated meat application. Food Hydrocoll. 153, 110017 (2024).

Article  CAS  Google Scholar 

Seo, J. W., Jung, W. K., Park, Y. H. & Bae, H. Development of cultivable alginate fibers for an ideal cell-cultivated meat scaffold and production of hybrid cultured meat. Carbohydr. Polym. 321, 121287 (2023).

Article  CAS  PubMed  Google Scholar 

Wollschlaeger, J. O. et al. Scaffolds for cultured meat on the basis of polysaccharide hydrogels enriched with plant-based proteins. Gels 8, 94 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Popa, L., Ghica, M. V., Tudoroiu, E. E., Ionescu, D. G. & Dinu-Pîrvu, C. E. Bacterial cellulose — a remarkable polymer as a source for biomaterials tailoring. Materials 15, 1054 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Gregory, D. A. et al. Bacterial cellulose: a smart biomaterial with diverse applications. Mater. Sci. Eng. R. Rep. 145, 100623 (2021).

Article  Google Scholar 

Narayanan, K. B., Zo, S. M. & Han, S. S. Novel biomimetic chitin-glucan polysaccharide nano/microfibrous fungal-scaffolds for tissue engineering applications. Int. J. Biol. Macromol. 149, 724–731 (2020).

Article  CAS  PubMed  Google Scholar 

Boroumand Moghaddam, A. et al. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20, 16540–16565 (2015).

Article  PubMed Central  PubMed  Google Scholar 

Kim, W. J., Kim, Y., Ovissipour, R. & Nitin, N. Plant-based biomaterials as scaffolds for cellular agriculture. Future Foods 10, 100468 (2024).

Article  CAS  Google Scholar 

Kim, W. J., Kim, Y., Lu, Y., Ovissipour, R. & Nitin, N. Evaluation of plant-based composite materials as 3D printed scaffolds for cell growth and proliferation in cultivated meat applications. Food Hydrocoll. 160, 110823 (2025).

Article  CAS  Google Scholar 

Engelen, L. et al. Relating particles and texture perception. Physiol. Behav. 86, 111–117 (2005).

Article  CAS  PubMed  Google Scholar 

Shewan, H. M., Stokes, J. R. & Smyth, H. E. Influence of particle modulus (softness) and matrix rheology on the sensory experience of ‘grittiness’ and ‘smoothness’. Food Hydrocoll. 103, 105662 (2020).

Article  CAS  Google Scholar 

Harris, A. F., Lacombe, J. & Zenhausern, F. The emerging role of decellularized plant-based scaffolds as a new biomaterial. Int. J. Mol. Sci. 22, 12347 (2021).

Article  PubMed Central  PubMed  Google Scholar 

Lenas, P., Moos, M. & Luyten, F. P. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. B Rev. 15, 381–394 (2009).

Article  Google Scholar 

Caddeo, S., Boffito, M. & Sartori, S. Tissue engineering approaches in the design of healthy and pathological in vitro tissue models. Front. Bioeng. Biotechnol. 5, 40 (2017).

Article  PubMed Central  PubMed  Google Scholar 

Jones, J. D., Rebello, A. S. & Gaudette, G. R. Decellularized spinach: an edible scaffold for laboratory-grown meat. Food Biosci. 41, 100986 (2021).

Article  CAS  Google Scholar 

Wang, X., He, Y., Gao, Q., Yang, D. & Liang, J. Approaches to evaluate nutrition of minerals in food. Food Sci. Hum. Wellness 10, 141–148 (2021).

Article  CAS  Google Scholar 

Connon, C. J. Approaches to corneal tissue engineering: top-down or bottom-up? Procedia Eng. 110, 15–20 (2015).

Article  Google Scholar 

Rout, S., Sowmya, S. R. & Srivastav, P. P. A review on development of plant-based meat analogues as future sustainable food. Int. J. Food Sci. Technol. 59, 481–487 (2024).

Article  CAS  Google Scholar 

Chng, V. J. Y. & Wan, A. C. A. The scaffold concept for alternative proteins. J. Food Eng. 357, 111622 (2023).

Article  CAS  Google Scholar 

Stout, A. J. et al. A Beefy-R culture medium: replacing albumin with rapeseed protein isolates. Biomaterials 296, 122092 (2023).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ismail, I., Hwang, Y. H. & Joo, S. T. Meat analog as future food: a review. J. Anim. Sci. Technol. 62, 111–120 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

McClements, D. J. & Grossmann, L. The science of plant-based foods: constructing next-generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf. 20, 4049–4100 (2021).

Article  PubMed  Google Scholar 

Langer, E. S. et al. 17th Annual report and survey of biopharmaceutical manufacturing capacity and production (BioPlan Associates, 2020).

Yang, O., Qadan, M. & Ierapetritou, M. Economic analysis of batch and continuous biopharmaceutical antibody production: a review. J. Pharm. Innov. 15, 182–200 (2020).

Article  Google Scholar 

BarthHaas. BarthHaas report 2023/2024 (BarthHaas, 2024).

Karlsson, P. & Karlsson, B. Troubled times for wine in 2023: global production and consumption shrinking. Forbes https://www.forbes.com/sites/karlsson/2024/04/25/troubled-times-for-wine-in-2023-global-production-and-consumption-shrinking/?sh=4b66bf8f2d25 (2024).

Speers, R. A. & Stokes, S. Effects of vessel geometry, fermenting volume and yeast repitching on fermenting beer. J. Inst. Brew. 115, 148–150 (2009).

Article  CAS  Google Scholar 

Organisation for Economic Co-operation and Development & Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2021-2030 (OECD, 2021).

GOOD Meat. GOOD Meat begins the world’s first retail sales of cultivated chicken. GOOD Meat https://www.goodmeat.co/all-news/good-meat-begins-the-worlds-first-retail-sales-of-cultivated-chicken (2024).

Tayag, Y. The secret ingredient that could save fake meat. The Atlantic https://www.theatlantic.com/health/archive/2023/02/plant-based-meat-lab-grown-animal-fat-flavor/673190/ (2023).

US Department of Agriculture. US exports of corn-based products continue to climb (USDA, 2014).

Xiang, N. et al. Edible films for cultivated meat production. Biomaterials 287, 121659 (2022).

Article  CAS  PubMed  Google Scholar 

Haraguchi, Y. et al. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae. Sci. Rep. 7, 41594 (2017).

Comments (0)

No login
gif