Lecuit, T. & Lenne, P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).
Article CAS PubMed Google Scholar
Zeller, R., López-Ríos, J. & Zuniga, A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 10, 845–858 (2009).
Article CAS PubMed Google Scholar
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).
Article CAS PubMed PubMed Central Google Scholar
Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410 (2014).
Article CAS PubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Article CAS PubMed Google Scholar
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
Article CAS PubMed Google Scholar
Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).
Article CAS PubMed Google Scholar
Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19, 534–546 (2022). This Review introduces spatial transcriptomics technologies and its core concepts and tools for data analysis.
Article CAS PubMed Google Scholar
Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nat Biotechnol 41, 773–782 (2023).
Article CAS PubMed Google Scholar
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).
Article CAS PubMed PubMed Central Google Scholar
Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).
Article CAS PubMed PubMed Central Google Scholar
Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).
Article CAS PubMed Google Scholar
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat. Methods 16, 1289–1296 (2019).
Article CAS PubMed PubMed Central Google Scholar
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e17 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711, 243–259 (2018).
Article CAS PubMed PubMed Central Google Scholar
Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. et al. Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Comput. Struct. Biotechnol. J. 21, 176–184 (2023).
Article CAS PubMed Google Scholar
Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).
Article CAS PubMed PubMed Central Google Scholar
Garmire, L. X. et al. Challenges and perspectives in computational deconvolution of genomics data. Nat. Methods 21, 391–400 (2024).
Article CAS PubMed Google Scholar
Gaujoux, R. & Seoighe, C. CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29, 2211–2212 (2013).
Article CAS PubMed Google Scholar
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tsoucas, D. et al. Accurate estimation of cell-type composition from gene expression data. Nat. Commun. 10, 2975 (2019).
Article PubMed PubMed Central Google Scholar
Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021).
Article PubMed PubMed Central Google Scholar
Xun, Z. et al. Reconstruction of the tumor spatial microenvironment along the malignant–boundary–nonmalignant axis. Nat. Commun. 14, 933 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yang, T. et al. AdRoit is an accurate and robust method to infer complex transcriptome composition. Commun. Biol. 4, 1–14 (2021).
Chen, Y., Ruan, F. & Wang, J.-P. NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data. Bioinformatics 41, btae747 (2024).
Article PubMed PubMed Central Google Scholar
Zhou, Z., Zhong, Y., Zhang, Z. & Ren, X. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Nat. Commun. 14, 7930 (2023).
Article CAS PubMed PubMed Central Google Scholar
Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021). This study showcases one of the first deconvolution methods for spatial transcriptomics data, SPOTlight, which combines matrix factorization with non-negative least squares regression to perform cell-type deconvolution.
Article CAS PubMed PubMed Central Google Scholar
Ru, B., Huang, J., Zhang, Y., Aldape, K. & Jiang, P. Estimation of cell lineages in tumors from spatial transcriptomics data. Nat. Commun. 14, 568 (2023).
Comments (0)