ATG5 suppresses type I IFN-dependent neutrophil effector functions during Mycobacterium tuberculosis infection in mice

Global Tuberculosis Report (World Health Organization, 2024).

Condos, R., Rom, W. N., Liu, Y. M. & Schluger, N. W. Local immune responses correlate with presentation and outcome in tuberculosis. Am. J. Respir. Crit. Care Med. 157, 729–735 (1998).

Article  CAS  PubMed  Google Scholar 

Han, Y. et al. High blood neutrophil-lymphocyte ratio associated with poor outcomes in miliary tuberculosis. J. Thorac. Dis. 10, 339–346 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Eum, S.-Y. et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137, 122–128 (2010).

Article  PubMed  Google Scholar 

Berry, M. P. R. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreira-Teixeira, L. et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat. Commun. 11, 5566 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muefong, C. N. & Sutherland, J. S. Neutrophils in tuberculosis-associated inflammation and lung pathology. Front. Immunol. 11, 962 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair, S. et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215, 1035–1045 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, B. B. et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2, 17072 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, E3168–E3176 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golovkine, G. R. et al. Autophagy restricts Mycobacterium tuberculosis during acute infection in mice. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01354-6 (2023).

Kinsella, R. L. et al. Autophagy prevents early proinflammatory responses and neutrophil recruitment during Mycobacterium tuberculosis infection without affecting pathogen burden in macrophages. PLoS Biol. 21, e3002159 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, K. H. & Lee, M.-S. Autophagy—a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 10, 322–337 (2014).

Article  CAS  PubMed  Google Scholar 

Lahiri, V., Hawkins, W. D. & Klionsky, D. J. Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab. 29, 803–826 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, K., Sutter, B. M. & Tu, B. P. Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nat. Commun. 12, 57 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onodera, J. & Ohsumi, Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582–31586 (2005).

Article  CAS  PubMed  Google Scholar 

Yang, Z. & Klionsky, D. J. Permeases recycle amino acids resulting from autophagy. Autophagy 3, 149–150 (2007).

Article  CAS  PubMed  Google Scholar 

Kinsella, R. et al. Perspectives and advances in the understanding of tuberculosis. Annu. Rev. Pathol. 16, 377–408 (2021).

Article  CAS  PubMed  Google Scholar 

Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res. 25, 694–701 (2005).

Article  CAS  PubMed  Google Scholar 

Dorhoi, A. et al. Type I IFN signaling triggers immunopathology in tuberculosis‐susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol. 44, 2380–2393 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimmey, J. M. et al. The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect. 19, 249–258 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naik, S. K. et al. Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses. Mucosal Immunol. https://doi.org/10.1016/j.mucimm.2024.07.002 (2024).

Huynh, J. P. et al. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J. Exp. Med. 215, 1823–1838 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poli, V. & Zanoni, I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. https://doi.org/10.1016/j.tim.2022.10.002 (2022).

Pylaeva, E., Lang, S. & Jablonska, J. The essential role of type I interferons in differentiation and activation of tumor-associated neutrophils. Front. Immunol. 7, 629 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Pylaeva, E. et al. Detrimental effect of type I IFNs during acute lung infection with Pseudomonas aeruginosa is mediated through the stimulation of neutrophil NETosis. Front. Immunol. 10, 2190 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gul, E. et al. Type I IFN–related NETosis in ataxia telangiectasia and Artemis deficiency. J. Allergy Clin. Immunol. 142, 246–257 (2018).

Article  CAS  PubMed  Google Scholar 

Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Chowdhury, C. S. et al. Type I IFN-mediated NET release promotes Mycobacterium tuberculosis replication and is associated with granuloma caseation. Cell Host Microbe 32, 2092–2111.e7 (2024).

Article  PubMed  Google Scholar 

Thiam, H. R. et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc. Natl Acad. Sci. USA 117, 7326–7337 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filio-Rodríguez, G. et al. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model. Innate Immun. 23, 625–637 (2017).

Article 

Comments (0)

No login
gif