World Malaria Report (World Health Organization, 2023).
Baruch, D. I., Gormley, J. A., Ma, C., Howard, R. J. & Pasloske, B. L. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl Acad. Sci. USA 93, 3497–3502 (1996).
Article CAS PubMed PubMed Central Google Scholar
Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).
Article CAS PubMed PubMed Central Google Scholar
Su, X. et al. A large and diverse gene family (var) encodes 200–350 kD proteins implicated in the antigenic variation and cytoadherence of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995).
Article CAS PubMed Google Scholar
Pasternak, N. D. & Dzikowski, R. PfEMP1: an antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int. J. Biochem. Cell Biol. 41, 1463–1466 (2009).
Article CAS PubMed Google Scholar
Miller, L. H., Good, M. F. & Milon, G. Malaria pathogenesis. Science 264, 1878–1883 (1994).
Article CAS PubMed Google Scholar
Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).
Article CAS PubMed Google Scholar
Chan, J. A. et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J. Clin. Invest. 122, 3227–3238 (2012).
Article CAS PubMed PubMed Central Google Scholar
Deitsch, K. W. & Dzikowski, R. Variant gene expression and antigenic variation by malaria parasites. Annu. Rev. Microbiol. 71, 625–641 (2017).
Article CAS PubMed Google Scholar
Otto, T. D. et al. Long read assemblies of geographically dispersed Plasmodium falciparum isolates reveal highly structured subtelomeres. Wellcome Open Res. 3, 52 (2018).
Article PubMed PubMed Central Google Scholar
Otto, T. et al. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res. 4, 193 (2019).
Article PubMed PubMed Central Google Scholar
Petter, M. et al. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog. 7, e1001292 (2011).
Article CAS PubMed PubMed Central Google Scholar
Petter, M. et al. H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol. Microbiol. 87, 1167–1182 (2013).
Article CAS PubMed Google Scholar
Azizan, S. et al. The P. falciparum alternative histones Pf H2A.Z and Pf H2B.Z are dynamically acetylated and antagonized by PfSir2 histone deacetylases at heterochromatin boundaries. mBio 14, e0201423 (2023).
Cortes, A. & Deitsch, K. W. Malaria epigenetics. Cold Spring Harb. Perspect. Med. 7, a025528 (2017).
Article PubMed PubMed Central Google Scholar
Chookajorn, T. et al. Epigenetic memory at malaria virulence genes. Proc. Natl Acad. Sci. USA 104, 899–902 (2007).
Article CAS PubMed PubMed Central Google Scholar
Lopez-Rubio, J. J. et al. 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66, 1296–1305 (2007).
Article CAS PubMed PubMed Central Google Scholar
Staalsoe, T. et al. In vivo switching between variant surface antigens in human Plasmodium falciparum infection. J. Infect. Dis. 186, 719–722 (2002).
Peters, J. et al. High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. Proc. Natl Acad. Sci. USA 99, 10689–10694 (2002).
Article CAS PubMed PubMed Central Google Scholar
Kaestli, M., Cortes, A., Lagog, M., Ott, M. & Beck, H. P. Longitudinal assessment of Plasmodium falciparum var gene transcription in naturally infected asymptomatic children in Papua New Guinea. J. Infect. Dis. 189, 1942–1951 (2004).
Article CAS PubMed Google Scholar
Bachmann, A. et al. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog. 15, e1007906 (2019).
Article CAS PubMed PubMed Central Google Scholar
Peters, J. M., Fowler, E. V., Krause, D. R., Cheng, Q. & Gatton, M. L. Differential changes in Plasmodium falciparum var transcription during adaptation to culture. J. Infect. Dis. 195, 748–755 (2007).
Article CAS PubMed Google Scholar
Wunderlich, G. et al. Rapid turnover of Plasmodium falciparum var gene transcripts and genotypes during natural non-symptomatic infections. Rev. Inst. Med. Trop. Sao Paulo 47, 195–201 (2005).
Ashley, E. A. & White, N. J. The duration of Plasmodium falciparum infections. Malar. J. 13, 500 (2014).
Article PubMed PubMed Central Google Scholar
Prah, D. A. & Laryea-Akrong, E. Asymptomatic low-density Plasmodium falciparum infections: parasites under the host’s immune radar? J. Infect. Dis. 229, 1913–1918 (2024).
Article CAS PubMed PubMed Central Google Scholar
Horn, D. Antigenic variation in African trypanosomes. Mol. Biochem. Parasitol. 195, 123–129 (2014).
Article CAS PubMed PubMed Central Google Scholar
Pays, E. Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol. 21, 517–520 (2005).
Article CAS PubMed Google Scholar
Gargantini, P. R., Serradell, M. D. C., Rios, D. N., Tenaglia, A. H. & Lujan, H. D. Antigenic variation in the intestinal parasite Giardia lamblia. Curr. Opin. Microbiol. 32, 52–58 (2016).
Article CAS PubMed Google Scholar
Al Khedery, B. & Allred, D. R. Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. Mol. Microbiol. 59, 402–414 (2006).
Article CAS PubMed Google Scholar
Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998).
Article CAS PubMed PubMed Central Google Scholar
Monahan, K. & Lomvardas, S. Monoallelic expression of olfactory receptors. Annu. Rev. Cell Dev. Biol. 31, 721–740 (2015).
Comments (0)