Huang J, Xie L, Song A, Zhang C. Selenium status and its antioxidant role in metabolic diseases. Oxid Med Cell Longev. 2022;2022:7009863.
Article PubMed PubMed Central Google Scholar
Petrović M. Selenium: widespread yet scarce, essential yet toxic. ChemTexts. 2021;7:11.
Ojeda ML, Carreras O, Nogales F. The role of selenoprotein tissue homeostasis in MetS programming: Energy balance and cardiometabolic implications. Antioxid. 2022;11(2):394.
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium–dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxid. 2018;7(5):66.
Sharma S, Sharma AK. Selenium distribution and chemistry in water and soil. In: Devi P, Singh P, Malakar A, Snow DD, editors. selenium contamination in water. Hoboken: John Wiley & Sons Ltd, NY; 2021.
Ostovar M, Saberi N, Ghiassi R. Selenium contamination in water; analytical and removal methods: a comprehensive review. Sep Sci Technol. 2022;57(15):2500–20.
Hagarová I, Nemček L. Reliable quantification of ultratrace selenium in food, beverages, and water samples by cloud point extraction and spectrometric analysis. Nutrients. 2022;14(17):3530.
Article PubMed PubMed Central Google Scholar
Šķesters A, Lece A, Kustovs D, Zolovs M. Selenium status and oxidative stress in SARS–CoV–2 patients. Medicina. 2023;59(3):527.
Article PubMed PubMed Central Google Scholar
Chirita L, Covaci E, Mot A, Ponta M, Gandea A, Frentiu T. Determination of selenium in food and environmental samples by hydride generation high–resolution continuum source quartz furnace atomic absorption spectrometry. J Anal At Spectrom. 2021;36(2):267–72.
Portugal LA, Palacio E, Frizzarin R, Santos Neto JH, Cerda V, Ferreira SLC. Multi–commutated flow system for inorganic selenium speciation in infusion tea samples by chemical vapor generation atomic fluorescence spectrometry. Talanta. 2023;252: 123897.
Article CAS PubMed Google Scholar
Lan G, Li X, Jia H, Yu X, Wang Z, Yao J, Mao X. Fast and sensitive determination of cadmium and selenium in rice by direct sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Molecules. 2022;27(23):8176.
Article CAS PubMed PubMed Central Google Scholar
Merino IE, Stegmann E, Aliaga ME, Gomez M, Arancibia V, Rojas−Romo C. Determination of Se(IV) concentration via cathodic stripping voltammetry in the presence of Cu(II) ions and ammonium diethyl dithiophosphate. Anal Chim Acta. 2019;1048:22–30.
Article CAS PubMed Google Scholar
Idris AO, Mabuba N, Nkosi D, Maxakato N, Arotiba OA. Electrochemical detection of selenium using glassy carbon electrode modified with reduced graphene oxide. Int J Environ Anal Chem. 2017;97(6):534–47.
Fakude CT, Arotiba OA, Moutloali R, Mabuba N. Nitrogen-doped graphene electrochemical sensor for selenium (IV) in water. Int J Electrochem Sci. 2019;14:9391–403.
Wang LH, Shan XE. Electrochemical reduction of selenium on a silver electrode and its determination in river water. J Anal Chem. 2016;71:917–25.
Ochab M, Gęca I, Korolczuk M. Determination of trace Se(IV) by anodic stripping voltammetry following double deposition and stripping steps. Talanta. 2016;165:364–8.
Idris AO, Mabuba N, Arotiba OA. Electroanalysis of selenium in water on an electrodeposited gold–nanoparticle modified glassy carbon electrode. J Electroanal Chem. 2015;758:7–11.
Idris AO, Mabuba N, Arotiba OA. Electrochemical co–detection of arsenic and selenium on a glassy carbon electrode modified with gold nanoparticles. Int J Electrochem Sci. 2017;12(1):10–21.
Shiba S, Takahashi S, Kamata T, Hachiya H, Kato D, Niwa O. Selective Au electrodeposition on Au nanoparticles embedded in carbon film electrode for Se (IV) detection. Sens Mater. 2019;31(4):1135–46.
Segura R, Pizarro J, Díaz K, Placencio A, Godoy F, Pino E, Recio F. Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes. Sens Actuators B Chem. 2015;220:263–9.
Wei H, Pan D, Cui Y, Liu H, Gao G, Xia J. Anodic stripping determination of selenium in seawater using an electrode modified with gold nanodendrites/perforated reduced graphene oxide. Int J Electrochem Sci. 2020;15:1669–80.
Lu D, Sullivan C, Brack EM, Drew CP, Kurup P. Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar–modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal Bioanal Chem. 2020;412:4113–25.
Article CAS PubMed Google Scholar
Tan Z, Wu W, Yin N, Jia M, Chen X, Bai Y, Wu H, Zhang Z, Li P. Determination of selenium in food and environmental samples using a gold nanocages/fluorinated graphene nanocomposite modified electrode. J Food Compos Anal. 2020;94:103628.
Sharifian P, Aliakbar A. Determination of Se(IV) by adsorptive cathodic stripping voltammetry at a Bi/Hg film electrode. Anal Methods. 2015;7(5):2121–8.
Sharifian P, Aliakbar A. Determination of Se(iv) as a 5–nitropiazselenol complex by adsorptive stripping voltammetry at an in situ plated bismuth film electrode. Anal Methods. 2015;7(10):4321–7.
Grabarczyk M, Adamczyk M. New strategies for the simple and sensitive voltammetric direct quantification of Se(IV) in environmental waters employing bismuth film modified glassy carbon electrode and amberlite resin. Molecules. 2021;26(14):4130.
Article CAS PubMed PubMed Central Google Scholar
Grabarczyk M, Fialek M. Microelectrode voltammetric analysis of low concentrations of Se(IV) ions in environmental waters. Molecules. 2024;29(7):1583.
Article CAS PubMed PubMed Central Google Scholar
Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications. 2nd ed. NY: John Wiley and Sons; 2001.
Konopka SJ, McDuffie B. Diffusion coefficients of ferri– and ferrocyanide ions in aqueous media, using twin-layer electrochemistry. Anal Chem. 1970;42(14):1741–6.
Torres J, Pintos V, Gonzatto L, Domínguez S, Kremer C, Kremer E. Selenium chemical speciation in natural water: Protonation and complexation behavior of selenite and selenite in the presence of environmentally relevant cations. Chem Geol. 2011;288(1–2):32–8.
Klaczek CE, Goss GG, Glover CN. Mechanistic characterization of waterborne selenite uptake in the water flea, Daphnia magna, indicates water chemistry affects toxicity in coal mine-impacted waters. Conserv Physiol. 2024. https://doi.org/10.1093/conphys/coad108.
Article PubMed PubMed Central Google Scholar
Rievaj M, Culkova E, Sandorová D, Lukácová-Chomisteková Z, Bellová R, Durdiak J, Tomcík P. Electroanalytical techniques or the detection of selenium as a biologically and environmentally significant analyte-A short review. Molecules. 2021;26(6):1768.
Article CAS PubMed PubMed Central Google Scholar
Rojas-Romo C, Aliaga M, Arancibia V. Determination of molybdenum(VI) via adsorptive stripping voltammetry using an ex-situ bismuth screen-printed carbon electrode. Microchem J. 2019;154:104589.
Grabarczyk M, Wardak C, Piech R, Wawruch A. An electrochemical sensor for the determination of trace concentrations of cadmium, based on spherical glassy carbon and nanotubes. Mater. 2023;16(8):3252.
Terán-Baamonde J, Bouchet S, Tessier E, Amouroux D. Development of a large volume injection method using a programmed temperature vaporization injector – gas chromatography hyphenated to ICP–MS for the simultaneous determination of mercury, tin, and lead species at ultra-trace levels in natural waters. J Chromatogr A. 2018;1547:77–85.
Comments (0)