Modification of Microporous Organic Network with Amino Acid for HILIC/RPLC Mixed-Mode High-Performance Liquid Chromatography

Lim HS, Hwang JY, Choi E, Lee G, Yoon SS, Kim M. Development and validation of HPLC method for the determination of ferrocyanide ion in food grade salts. Food Chem. 2018;239:1167–74.

Article  CAS  Google Scholar 

Gu ZY, Yang CX, Chang N, Yan XP. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res. 2012;45:734–45.

Article  CAS  PubMed  Google Scholar 

Zhou L, Tang J, Fan RH, Chen T, Ouyang Y. Simultaneous enantiomeric separation of three triazole fungicides by reversed-phase high performance liquid chromatography. Chin J Anal Lab. 2024;43(6):774–9.

CAS  Google Scholar 

Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Anal Chem. 2020;122: 115709.

Article  CAS  Google Scholar 

Gennari O, Montesano D, Salzano A, Albrizio S, Grumetto L. Determination of dimethyl fumarate in desiccant and antimould sachets by reversed-phase liquid chromatography: determination of dimethyl fumarate in desiccant and antimould sachets. Biomed Chromatogr. 2011;25:1315–8.

Article  CAS  PubMed  Google Scholar 

Guo X, Zhang X, Guo Z, Liu Y, Shen A, Jin G, Liang X. Hydrophilic interaction chromatography for selective separation of isomeric saponins. J Chromatogr A. 2014;1325:121–8.

Article  CAS  PubMed  Google Scholar 

Jiang P, Wu D, Lucy CA. Determination of void volume in normal phase liquid chromatography. J Chromatogr A. 2014;1324:63–70.

Article  CAS  PubMed  Google Scholar 

Wang L, Wei W, Xia Z, Jie X, Xia ZZ. Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends Anal Chem. 2016;80:495–506.

Article  CAS  Google Scholar 

Chen J, Peng H, Zhang Z, Zhang Z, Ni R, Chen Y, Chen P, Peng J. Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. Talanta. 2021;233: 122524.

Article  CAS  PubMed  Google Scholar 

Si T, Lu X, Zhang H, Wang S, Liang X, Guo Y. Two-dimensional MOF Cu-BDC nanosheets/ILs@silica core-shell composites as mixed-mode stationary phase for high performance liquid chromatography. Chin Chem Lett. 2022;33:3869–72.

Article  CAS  Google Scholar 

Zhang T, Liang XJ, Wang LC, Wang S, Liu XX, Guo Y. An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chin Chem Lett. 2025;36: 109889.

Article  CAS  Google Scholar 

Wang X, Wang X, Wu J, Yu J, Zeng H, Yang H, Peng H, Zhou G, Peng J. Preparation of dicationic ionic liquid modified silica stationary phase for mixed-mode liquid chromatography and its application for food additive detection. Anal Chim Acta. 2024;1321: 343018.

Article  CAS  PubMed  Google Scholar 

Li X, Li B, Liu M, Zhou Y, Zhang L, Qiao X. Core-shell metal-organic frameworks as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography. ACS Appl Mater Interfaces. 2019;11:10320–7.

Article  CAS  PubMed  Google Scholar 

Si T, Wang L, Zhang H, Lu X, Liang X, Wang S, Guo Y. Core-shell MOFs-based composites of defect-functionalized for mixed-mode chromatographic separation. J Chromatogr A. 2022;1671: 463011.

Article  CAS  PubMed  Google Scholar 

Zheng Y, Wan M, Zhou J, Luo Q, Gao D, Fu Q, Zeng J, Zu F, Wang L. Striped covalent organic frameworks modified stationary phase for mixed mode chromatography. J Chromatogr A. 2021;1649: 462186.

Article  CAS  PubMed  Google Scholar 

Xu S, Li Z, Zhang L, Zhang W, Li D. In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta. 2021;221: 121612.

Article  CAS  PubMed  Google Scholar 

Chun J, Park JH, Kim J, Lee SM, Kim HJ, Son SU. Tubular-shape evolution of microporous organic networks. Chem Mater. 2012;24:3458–63.

Article  CAS  Google Scholar 

Jiang JX, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc. 2008;130:7710–20.

Article  CAS  PubMed  Google Scholar 

Cui YY, Yao H, Yang CX, Yan XP. In situ fabrication of microporous organic network coated capillary column for high resolution gas chromatographic separation of hydrocarbons. Electrophoresis. 2019;40:2186–92.

Article  CAS  PubMed  Google Scholar 

Li X, Cui YY, Yang CX. Covalent coupling fabrication of microporous organic network bonded capillary columns for gas chromatographic separation. Talanta. 2021;224: 121914.

Article  CAS  PubMed  Google Scholar 

Du ZD, Cui YY, Yang CX. Fabrication of spherical silica amino-functionalized microporous organic network composites for high performance liquid chromatography. Talanta. 2021;221: 121570.

Article  CAS  PubMed  Google Scholar 

Yu C, Liang M, Yue X, Tian K, Liu D, Qiao X. Superhydrophobic conjugated microporous polymers grafted silica microspheres for liquid chromatographic separation. J Chromatogr A. 2020;1631: 461539.

Article  CAS  PubMed  Google Scholar 

Sun HF, Cui YY, Yang CX. Fabrication of microporous organic network@silica composite for high-performance liquid chromatographic separation of drugs and proteins. Electrophoresis. 2021;42:1936–44.

Article  CAS  PubMed  Google Scholar 

Sun HF, Cui YY, Zhen CQ, Yang CX. Monomer-mediated fabrication of microporous organic network@silica microsphere for reversed-phase/hydrophilic interaction mixed-mode chromatography. Talanta. 2023;251: 123763.

Article  CAS  PubMed  Google Scholar 

Sun HF, Cui YY, Li HL, Yang CX. Click post-synthesis of microporous organic network@silica composites for reversed-phase/hydrophilic interaction mixed-mode chromatography. Anal Bioanal Chem. 2023;415:4533–43.

Article  CAS  PubMed  Google Scholar 

Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004–21.

Article  CAS  Google Scholar 

Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted tool-box for small molecule and polymer synthesis. Chem Soc Rev. 2010;39:1355–87.

Article  CAS  PubMed  Google Scholar 

Zeng HL, Peng JD, Peng HJ, Yang HQ, Wang X, Xu ZQ, Chen WH. Preparation and post-modified of dicationic ionic liquid stationary phase and their application in mixed-mode liquid chromatography. Microchem J. 2024;202: 110785.

Article  CAS  Google Scholar 

Sradha SA, Sariga GL, Varghese A. Advancements in thiol-yne click chemistry: Recent trends and applications in polymer synthesis and functionalization. Mater Today Chem. 2024;38: 102112.

Article  Google Scholar 

Tian C, Ren X, He M, Chen B, Hu B. Core-shell magnetic porous organic polymer for magnetic solid-phase extraction of fluoroquinolone antibiotics in honey samples followed by high-performance liquid chromatography with fluorescence detection. J Sep Sci. 2022;45:874–82.

Article  CAS  PubMed  Google Scholar 

Xu NY, Guo P, Chen JK, Zhang JH, Wang BJ, Xie SM, Yuan LM. Chiral core-shell microspheres β-CD-COF@SiO2 used for HPLC enantioseparation. Talanta. 2021;235: 122754.

Article  CAS  PubMed  Google Scholar 

Liu Y, He N, Lu Y, Li W, He X, Li Z, Chen Z. A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography. J Pharm Anal. 2023;13:209–15.

Article  PubMed 

Comments (0)

No login
gif