Electrochemical Biosensor Based on Lactate Oxidase Mimic Activity of CoN/rGO for Lactate Detection

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Tar. 2022;7:305.

Article  CAS  Google Scholar 

Alam F, RoyChoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, Bhansali S, Pala N. Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron. 2018;117(15):818–29.

Article  CAS  PubMed  Google Scholar 

Rathee K, Dhull V, Dhull R, Singh S. Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep. 2016;5:35–54.

PubMed  Google Scholar 

Jia WZ, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang ZJ, Ramírez J, Chan G, Wang J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem. 2013;85(14):6553–60.

Article  CAS  PubMed  Google Scholar 

Pellegrini D, Onor M, Degano I, Bramanti E. Development and validation of a novel derivatization method for the determination of lactate in urine and saliva by liquid chromatography with UV and fluorescence detection. Talanta. 2014;130(1):280–7.

Article  CAS  PubMed  Google Scholar 

Cevasco G, Piątek AM, Scapolla C, Thea S. A simple, sensitive and efficient assay for the determination of D-and L-lactic acid enantiomers in human plasma by high-performance liquid chromatography. J Chromatogr A. 2011;1218(6):787–92.

Article  CAS  PubMed  Google Scholar 

Wijngaard R, Perramón M, Parra-Robert M, Hidalgo S, Butrico G, Morales-Ruiz M, Zeng M, Casals E, Jiménez W, Fernández-Varo G. Validation of a gas chromatography-mass spectrometry method for the measurement of the redox state metabolic ratios lactate/pyruvate and β-hydroxybutyrate/acetoacetate in biological samples. Int J Mol Sci. 2021;22(9):4752.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young RS, Petroff OA, Chen B, Aquila J, William J, Gore JC. Preferential utilization of lactate in neonatal dog brain: in vivo and in vitro proton NMR study. Neonatology. 1991;59(1):46–53.

Article  CAS  Google Scholar 

Ballesta-Claver J, Valencia-Mirón M, Capitán-Vallvey L. One-shot lactate chemiluminescent biosensor. Anal Chim Acta. 2008;629(1–2):136–44.

Article  CAS  PubMed  Google Scholar 

Payne ME, Zamarayeva A, Pister VI, Yamamoto NAD, Arias AC. Printed, flexible lactate sensors: design considerations before performing on-body measurements. Sci Rep. 2019;9(1):13720.

Article  PubMed  PubMed Central  Google Scholar 

Cheng HY, Hu CY, Ji ZL, Ma WC, Wang HX. A solid ionic lactate biosensor using doped graphene-like membrane of Au-EVIMC-titania nanotubes-polyaniline. Biosens Bioelectron. 2018;118:97–101.

Article  CAS  PubMed  Google Scholar 

Hussain KK, Gurudatt NG, Akhtar MH, Seo KD, Park DS, Shim YB. Nano-biosensor for the in vitro lactate detection using bi-functionalized conducting polymer/N, S-doped carbon; the effect of αCHC inhibitor on lactate level in cancer cell lines. Biosens Bioelectron. 2020;155:112094.

Article  CAS  PubMed  Google Scholar 

Zheng HJ, Zhang S, Liu XQ, Zhou YM, Alwarappan S. Synthesis of a PEDOT-TiO2 heterostructure as a dual biosensing platform operating via photoelectrochemical and electrochemical transduction mode. Biosens Bioelectron. 2020;162:112234.

Article  CAS  PubMed  Google Scholar 

Fan CY, Zhao JC, Tang YH, Lin YH. Using near-infrared I/II light to regulate the performance of nanozymes. J Anal Test. 2023;7:272–84.

Article  Google Scholar 

Ye QY, Dai T, Shen J, Xu Q, Hu XY, Shu Y. Incorporation of fluorescent carbon quantum dots into metal-organic frameworks with peroxidase-mimicking activity for high-performance ratiometric fluorescent biosensing. J Anal Test. 2023;7:16–24.

Article  Google Scholar 

Chen PC, Periasamy AP, Harroun SG, Wu WP, Chang HT. Photoluminescence sensing systems based on copper, gold and silver nanomaterials. Coordin Chem Rev. 2016;320:129–38.

Article  Google Scholar 

Heo SG, Yang WS, Kim S, Park YM, Park KT, Oh SJ, Seo SJ. Synthesis, characterization and non-enzymatic lactate sensing performance investigation of mesoporous copper oxide (CuO) using inverse micelle method. Appl Surf Sci. 2021;555:149638.

Article  CAS  Google Scholar 

Arivazhagan M, Maduraiveeran G. Hierarchical gold dispersed nickel oxide nanodendrites microarrays as a potential platform for the sensitive electrochemical detection of glucose and lactate in human serum and urine. Mater Chem Phys. 2023;295:127084.

Article  CAS  Google Scholar 

Chang AS, Memon NN, Amin S, Chang F, Aftab U, Abro MI, Chandio AD, Shah AA, Ibupoto MH, Ansari MA, Ibupoto ZH. Facile non-enzymatic lactic acid sensor based on cobalt oxide nanostructures. Electroanalysis. 2019;31(7):1296–303.

Article  CAS  Google Scholar 

Djebbi MA, Boubakri S, Braiek M, Jaffrezic-Renault N, Namour P, Amara AB. High performance non-enzymatic electrochemical lactate sensor based on ZnAl layered double hydroxide nanosheets supported gold nanoparticles. J Electrochem Soc. 2021;168(5):057529.

Article  CAS  Google Scholar 

Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA. Nonenzymatic sensor for lactate detection in human sweat. Anal Chem. 2017;89(21):11198–202.

Article  CAS  PubMed  Google Scholar 

Nien YH, Kang ZX, Su TY, Ho CS, Chou JC, Lai CH, Kuo PY, Lai TY, Dong ZX, Chen YY, Huang YH. Investigation of flexible arrayed lactate biosensor based on copper doped zinc oxide films modified by iron-platinum nanoparticles. Polymers. 2021;13(13):2062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Wang LR, Li GD, Yan D, Liu CH, Xu TL, Zhang XJ. Ultra-small wearable flexible biosensor for continuous sweat analysis. ACS Sensors. 2022;7(10):3102–7.

Article  CAS  PubMed  Google Scholar 

Zhao H, Lou FM, Shi XR, Zhang H, Li QF. Detection of lactate in serum by electrochemiluminescence biosensor based on luminol-reduced gold nanoparticles/carbon nanotubes three dimensional nanocomposites. Chin J Anal Lab. 2024;43(6):785–92.

CAS  Google Scholar 

Li YZ, Li TT, Chen W, Song YY. Co4N nanowires: noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Interfaces. 2017;9(35):29881–8.

Article  CAS  PubMed  Google Scholar 

Chen PZ, Xu K, Tong Y, Li XL, Tao S, Fang ZW, Chu WS, Wu XJ, Wu CZ. Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorg Chem Front. 2016;3(2):236–42.

Article  CAS  Google Scholar 

Yuan W, Wang S, Ma Y, Qiu Y, An Y, Cheng L. Interfacial engineering of cobalt nitrides and mesoporous nitrogen-doped carbon: toward efficient overall water-splitting activity with enhanced charge-transfer efficiency. ACS Energy Lett. 2020;5(3):692–700.

Article  CAS  Google Scholar 

Song FZ, Li W, Yang JQ, Han GQ, Yan T, Liu X, Rao Y, Liao PL, Cao Z, Sun YJ. Interfacial sites between cobalt nitride and cobalt act as bifunctional catalysts for hydrogen electrochemistry. ACS Energy Lett. 2019;4(7):1594–601.

Article  CAS  Google Scholar 

Sheng JP, Wang LQ, Deng L, Zhang M, He HC, Zeng K, Tang FY, Liu YN. MOF-templated fabrication of hollow Co4N@N-doped carbon porous nanocages with superior catalytic activity. ACS Appl Mater Interfaces. 2018;10(8):7191–200.

Article  CAS  PubMed  Google Scholar 

Zhao SF, Li HH, Liu RY, Tao N, Deng L, Xu QQ, Hou JN, Sheng JP, Zheng J, Wang LQ, Chen WS, Guo SJ, Liu YN. Nitrogen-centered lactate oxidase nanozyme for tumor lactate modulation and microenvironment remodeling. J Am Chem Soc. 2023;145(18):10322–32.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ. Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew Chem Int Ed. 2016;128(30):8812–6.

Article  Google Scholar 

Wu M, Wang K, Yi M, Tong Y, Wang Y, Song S. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species. ACS Catal. 2017;7(9):6082–8.

Article  CAS  Google Scholar 

D’Souza F, Villard A, Van Caemelbecke E, Franzen M, Boschi T, Tagliatesta P, Kadish KM. Electrochemical and spectroelectrochemical behavior of cobalt(III), cobalt(II), and cobalt(I) complexes of meso-tetraphenylporphyrinate bearing bromides on the β-pyrrole positions. Inorg Chem. 1993;32(19):4042–8.

Comments (0)

No login
gif