Moreno-González R, Cánovas CR, Millán-Becerro R, León R, Olías M. High-resolution temporal monitoring of rare earth elements in acidic drainages from an abandoned sulphide mine (iberian pyrite belt, Spain). Chemosphere. 2023;344: 140297.
Liu T, Chen J. Extraction and separation of heavy rare earth elements: A review. Sep Purif Technol. 2021;276: 119263.
Liu SL, Fan HR, Liu X, Meng JY, Butcher AR, Yann L, Yang KF, Li XC. Global rare earth elements projects: new developments and supply chains. Ore Geol Rev. 2023;157: 105428.
Li HH, Wang YK, Liao LS. Near-Infrared luminescent materials incorporating rare earth/transition metal ions: from materials to applications. Adv Mater. 2024;36:2403076.
Duo YY, Zhao L, Wang ZG, Liu SL. NIR-II fluorophores: from synthesis to biological applications. J Anal Test. 2023;7:245–59.
Xue Y, Wang P, He M, Zhang T, Yang C, Li Z. Rare earth nanomaterials in electrochemical reduction of carbon dioxide. Coord Chem Rev. 2024;516: 215983.
Dong Y, Ren W, Sun Y, Duan X, Liu C. Aggregation-augmented magnetism of lanthanide-doped nanoparticles and enabling magnetic levitation-based exosome sensing. Adv Mater. 2024;36:2407013.
Yang H, Peng F, Schier DE, Markotic SA, Zhao X, Hong AN, Wang Y, Feng P, Bu X. Selective crystallization of rare-earth ions into cationic metal-organic frameworks for rare-earth separation. Angew Chem Int Ed. 2021;60:11148–52.
Innocenzi V, Ippolito NM, Pietrelli L, Centofanti M, Piga L, Vegliò F. Application of solvent extraction operation to recover rare earths from fluorescent lamps. J Cleaner Prod. 2018;172:2840–52.
Ye Q, Jin X, Zhu B, Gao H, Wei N. Lanmodulin-functionalized magnetic nanoparticles as a highly selective biosorbent for recovery of rare earth elements. Environ Sci Technol. 2023;57:4276–85.
Article CAS PubMed Google Scholar
Luo HG. Separation of rare earth elements by thin-layer chromatography—study on the P538 system. Chin Sci Bull. 1986;31:907–9.
Ramzan M, Kifle D, Wibetoe G. A rapid impregnation method for loading desired amounts of extractant on prepacked reversed-phase columns for high performance liquid chromatographic separation of metal ions. J Chromatogr A. 2017;1500:76–83.
Article CAS PubMed Google Scholar
Kifle D. Optimization of ion-pairing HPLC method for mutual separation of rare earth elements: unveiling the “diad-effect” appraisal utilizing periodic variations in their properties. J Liq Chromatogr Relat Technol. 2024. https://doi.org/10.1080/10826076.2024.2400981.
Qiu M, Zhu Z, Wang D, Xu Z, Miao W, Jiang L, Tian Y. Large-scale metal-organic framework nanoparticle monolayers with controlled orientation for selective transport of rare-earth elements. J Am Chem Soc. 2023;145(22):12275–83.
Article CAS PubMed Google Scholar
Kumari A, Dipali, Randhawa NS, Sahu SK. Electrochemical treatment of spent NdFeB magnet in organic acid for recovery of rare earths and other metal values. J Cleaner Prod. 2021; 309: 127393.
Chen B, He M, Zhang H, Jiang Z, Hu B. Chromatographic techniques for rare earth elements analysis. Phys Sci Rev. 2017;2(4):20160057.
Dybczyński RS, Kulisa K. Nomadic behavior of Sc and Y with respect to lanthanide series in chromatographic separations. Analytical and technological aspects, a review. TrAC Trends Anal Chem. 2019;115:23–38.
Choppin GR, Harvey BG, Thompson SG. A new eluant for the separation of the actinide elements. J Inorg Nucl Chem. 1956;2(1):66–8.
Raut NM, Jaison PG, Aggarwal SK. Comparative evaluation of three α-hydroxycarboxylic acids for the separation of lanthanides by dynamically modified reversed-phase high-performance liquid chromatography. J Chromatogr A. 2002;959(1):163–72.
Article CAS PubMed Google Scholar
Dybczyński RS, Kulisa K, Pyszynska M, Bojanowska-Czajka A. New reversed phase-high performance liquid chromatographic method for selective separation of Y from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode. J Chromatogr A. 2015;1386:74–80.
Dybczyński R, Kulisa K. Effect of temperature and the mechanism of zone spreading during cation-exchange separation of rare earth elements by ion chromatography. Chromatographia. 2005;61:573–80.
Dybczyński RS, Kulisa K. Unusual elution sequence of rare earth elements (REE) in some ion chromatographic systems and the effect of temperature. Sep Sci Technol. 2011;46(11):1767–75.
Moraes NMP, Shihomatsu HM. Dynamic ion-exchange chromatography for the determination of lanthanides in rock standards. J Chromatogr A. 1994;679(2):387–91.
Knight CH, Cassidy RM, Recoskie BM, Green LW. Dynamic ion exchange chromatography for determination of number of fissions in thorium-uranium dioxide fuels. Anal Chem. 1984;56(3):474–8.
Santoyo E, Guevara M, Verma SP. Determination of lanthanides in international geochemical reference materials by reversed-phase high-performance liquid chromatography using error propagation theory to estimate total analysis uncertainties. J Chromatogr A. 2006;1118(1):73–81.
Article CAS PubMed Google Scholar
Gettar RT, Gautier EA, Servant RE, Batistoni DA. Eriochrome Black T as a post-column reagent for the ion chromatographic determination of rare earths. J Chromatogr A. 1999;855(1):111–9.
Article CAS PubMed Google Scholar
Nesterenko PN, Jones P. Isocratic separation of lanthanides and Y by high-performance chelation ion chromatography on iminodiacetic acid bonded to silica. J Chromatogr A. 1998;804(1):223–31.
Kuroda R, Wada T, Kokubo Y, Oguma K. Ion interaction chromatography of nitrilotriacetatocomplexes of the rare earth elements with post-column reaction detection. Talanta. 1993;40(2):237–41.
Article CAS PubMed Google Scholar
Wang D, Li H, Qiu H, Chen J. Preparation and evaluation of silicon quantum dots-bonded silica stationary phase for reversed-phase chromatography. J Anal Test. 2023;7(1):8–15.
Jiang XF, Gao SQ, Zheng KN, Pu N, Yuan LM. Co-NH2-BDC-L-hydroxyproline used as a chiral stationary phase in high performance liqiud chromatography. Chin J Anal Lab. 2024;43(8):1118–23.
Sun G, Luo Y, Yan Z, Qiu H, Tang W. Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chin Chem Lett. 2024;35(12): 109787.
Li H, Wang X, Shi C, Zhao L, Li Z, Qiu H. Chiral phenethylamine synergistic tricarboxylic acid modified β-cyclodextrin immobilized on porous silica for enantioseparation. Chin Chem Lett. 2023;34(3): 107606.
Chen J, Qiu H. Recent advances in carbon dots-based chromatographic separation materials. Chinese J Chromatogr. 2023;41(10):825–34.
Melero JA, Stucky GD, van Grieken R, Morales G. Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups. J Mater Chem. 2002;12(6):1664–70.
Martín A, Arribas-Yuste E, Paniagua M, Morales G, Melero JA. Efficient self-condensation of cyclohexanone into biojet fuel precursors over sulfonic acid-modified silicas: insights on the effect of pore size and structure. ACS Sustain Chem Eng. 2024;12(27):10175–85.
Article PubMed PubMed Central Google Scholar
Shishlov NM, Khursan SL. Effect of ion interactions on the IR spectrum of benzenesulfonate ion. Restoration of sulfonate ion symmetry in sodium benzenesulfonate dimer. J Mol Struct. 2016;1123:360–6.
Chen B, He M, Zhang H, Jiang Z, Hu B. Chromatographic techniques for rare earth elements analysis. Phys Sci Rev. 2017;2(4):1–35.
Dybczyński R, Kulisa K. Effect of carboxylic a-Hydroxyacid and of temperature on rare earth element (REE) separation by ion chromatography. Chem Anal. 2009;54:437–57.
Comments (0)