Chemical Proteomics Unraveling the Contribution of Covalent Protein Modifications to Antidepressant Effects of Ketamine

Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA Jr, Gould TD. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70(3):621–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, Tan Y, Duan C, Li H, Huang H, Li Y, Cao X, Lingle CJ, Yang Y, Hu H. Brain region–specific action of ketamine as a rapid antidepressant. Science. 2024;385(6709):eado7010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibrahim L, Diazgranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P, Moaddel R, Wainer I, Luckenbaugh DA, Manji HK, Zarate CA Jr. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology. 2012;37(6):1526–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kishimoto T, Chawla JM, Hagi K, Zarate CA, Kane JM, Bauer M, Correll CU. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med. 2016;46(7):1459–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

Article  CAS  PubMed  Google Scholar 

Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, Hall BJ. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife. 2014;3: e03581.

Article  PubMed  PubMed Central  Google Scholar 

Su T, Lu Y, Fu C, Geng Y, Chen Y. GluN2A mediates ketamine-induced rapid antidepressant-like responses. Nat Neurosci. 2023;26(10):1751–61.

Article  CAS  PubMed  Google Scholar 

Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, Luscher B. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol Psychiatry. 2016;80(6):457–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29(7):419–23.

Article  CAS  PubMed  Google Scholar 

Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317–22.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Ye F, Zhang T, Lv S, Zhou L, Du D, Lin H, Guo F, Luo C, Zhu S. Structural basis of ketamine action on human NMDA receptors. Nature. 2021;596(7871):301–5.

Article  CAS  PubMed  Google Scholar 

Yang B, Ren Q, Ma M, Chen QX, Hashimoto K. Antidepressant effects of (+)-MK-801 and (-)-MK-801 in the social defeat stress model. Int J Neuropsychopharmacol. 2016;19(12):pyw080.

Article  PubMed  PubMed Central  Google Scholar 

Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SL, Sanghvi M, Goldberg ME, Torjman MC, Wainer IW. Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica. 2012;42(11):1076–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vallianatou T, de Souza AC, Tsiara I, Bèchet NB, Lundgaard I, Globisch D. Identification of new ketamine metabolites and their detailed distribution in the mammalian brain. ACS Chem Neurosci. 2024;15(7):1335–41.

Article  CAS  PubMed  Google Scholar 

Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riggs LM, Aracava Y, Zanos P, Fischell J, Albuquerque EX, Pereira EFR, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology. 2019;45(2):426–36.

Article  PubMed  PubMed Central  Google Scholar 

Highland JN, Morris PJ, Zanos P, Lovett J, Ghosh S, Wang AQ, Zarate CA Jr, Thomas CJ, Moaddel R, Gould TD. Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine. J Psychopharmacol. 2018;33(1):12–24.

Article  PubMed  PubMed Central  Google Scholar 

Lumsden EW, Troppoli TA, Myers SJ, Zanos P, Aracava Y, Kehr J, Lovett J, Kim S, Wang FH, Schmidt S, Jenne CE, Yuan P, Morris PJ, Thomas CJ, Zarate CA Jr, Moaddel R, Traynelis SF, Pereira EFR, Thompson SM, Albuquerque EX, Gould TD. Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA. 2019;116(11):5160–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Kobayashi S, Nakao K, Dong C, Han M, Qu Y, Ren Q, Zhang JC, Ma M, Toki H, Yamaguchi JI, Chaki S, Shirayama Y, Nakazawa K, Manabe T, Hashimoto K. AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry. 2018;84(8):591–600.

Article  CAS  PubMed  Google Scholar 

Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today. 2023;28(12): 103799.

Article  CAS  PubMed  Google Scholar 

Bauer RA. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today. 2015;20(9):1061–73.

Article  CAS  PubMed  Google Scholar 

Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev. 2022;42(4):1704–34.

Article  CAS  PubMed  Google Scholar 

Gong S, Zhuo Y, Chen S, Hu X, Fan XX, Wu JL, Li N. Quantification of osimertinib and metabolite-protein modification reveals its high potency and long duration of effects on target organs. Chem Res Toxicol. 2021;34(11):2309–18.

Article  CAS  PubMed  Google Scholar 

Clements JA, Nimmo WS, Grant IS. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci. 1982;71(5):539–42.

Article  CAS  PubMed  Google Scholar 

Hijazi Y, Bodonian C, Bolon M, Salord F, Boulieu R. Pharmacokinetics and haemodynamics of ketamine in intensive care patients with brain or spinal cord injury. Br J Anaesth. 2003;90(2):155–60.

Article  CAS  PubMed  Google Scholar 

Hu X, Wu JL, He Q, Xiong ZQ, Li N. Strategy for cysteine-targeting covalent inhibitors screening using in-house database based LC-MS/MS and drug repurposing. J Pharm Anal. 2024;15:101045.

Article  PubMed  PubMed Central  Google Scholar 

Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Different Schiff bases-structure, importance and classification. Molecules. 2022;27(3):787.

Article  CAS 

Comments (0)

No login
gif