Empowering materials science with VASPKIT: a toolkit for enhanced simulation and analysis

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Article  CAS  Google Scholar 

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Article  CAS  Google Scholar 

Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

Article  PubMed  Google Scholar 

Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

Article  CAS  PubMed  Google Scholar 

Gonze, X. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016).

Article  CAS  Google Scholar 

Clark, S. J. et al. First principles methods using CASTEP. Z. Für Krist. Cryst. Mater. 220, 567–570 (2005).

Article  CAS  Google Scholar 

Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

Article  CAS  Google Scholar 

Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

Article  CAS  PubMed  Google Scholar 

Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

Article  PubMed  Google Scholar 

Mortensen, J. J. et al. GPAW: an open Python package for electronic structure calculations. J. Chem. Phys. 160, 092503 (2024).

Article  CAS  PubMed  Google Scholar 

Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

Article  CAS  Google Scholar 

Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

Article  Google Scholar 

Herath, U. et al. PyProcar: a Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).

Article  CAS  Google Scholar 

Ganose, A. M., Jackson, A. J. & Scanlon, D. O. sumo: command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 3, 717 (2018).

Article  Google Scholar 

Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

Article  CAS  Google Scholar 

Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

Article  Google Scholar 

Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Article  CAS  Google Scholar 

Kokalj, A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003).

Article  CAS  Google Scholar 

Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

Article  PubMed  Google Scholar 

Kawamura, M. FermiSurfer: Fermi-surface viewer providing multiple representation schemes. Comput. Phys. Commun. 239, 197–203 (2019).

Article  CAS  Google Scholar 

Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 128, 140–184 (2017).

Article  CAS  Google Scholar 

Popescu, V. & Zunger, A. Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85, 085201 (2012).

Article  Google Scholar 

Popescu, V. & Zunger, A. Effective band structure of random alloys. Phys. Rev. Lett. 104, 236403 (2010).

Article  PubMed  Google Scholar 

Hüser, F., Olsen, T. & Thygesen, K. S. How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: monolayer MoS2. Phys. Rev. B 88, 245309 (2013).

Article  Google Scholar 

Cudazzo, P., Tokatly, I. V. & Rubio, A. Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphane. Phys. Rev. B 84, 085406 (2011).

Article  Google Scholar 

Yu, L. & Zunger, A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012).

Article  PubMed  Google Scholar 

Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

Article  Google Scholar 

Menéndez-Proupin, E. & Singh, A. K. Ab initio calculations of elastic properties of compressed Pt. Phys. Rev. B 76, 054117 (2007).

Article  Google Scholar 

Idrissi, S., Labrim, H., Bahmad, L. & Benyoussef, A. DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347 (2021).

Article  CAS  Google Scholar 

Meng, W. et al. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 8, 2999–3007 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, C., Tian, W. & Zhou, K. Ab initio simulation of liquid water without artificial high temperature. J. Chem. Theory Comput. 20, 8202–8213 (2024).

CAS  Google Scholar 

Chase, M. W., Jr. NIST-JANAF Thermochemical Tables, Monograph 9 Vol. 9 (American Chemical Society, 1998).

Kosmala, T. et al. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 4, 850–859 (2021).

Article  CAS  Google Scholar 

Comments (0)

No login
gif