Magana, M. et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 20, e216–e230 (2020).
Article CAS PubMed Google Scholar
Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
de la Fuente-Nunez, C., Torres, M. D., Mojica, F. J. & Lu, T. K. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr. Opin. Microbiol. 37, 95–102 (2017).
Article PubMed PubMed Central Google Scholar
Porto, W. F. et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun. 9, 1490 (2018).
Article PubMed PubMed Central Google Scholar
Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Leveraging artificial intelligence in the fight against infectious diseases. Science 381, 164–170 (2023).
Article CAS PubMed PubMed Central Google Scholar
Maasch, J. R. M. A., Torres, M. D. T., Melo, M. C. R. & de la Fuente-Nunez, C. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 31, 1260–1274 (2023).
Article CAS PubMed PubMed Central Google Scholar
Torres, M. D. T. et al. Mining for encrypted peptide antibiotics in the human proteome. Nat. Biomed. Eng. 6, 67–75 (2022).
Wan, F., Torres, M. D. T., Peng, J. & de la Fuente-Nunez, C. Deep-learning-enabled antibiotic discovery through molecular de-extinction. Nat. Biomed. Eng. 8, 854–871 (2024).
Article CAS PubMed PubMed Central Google Scholar
Diéguez-Santana, K. & González-Díaz, H. Towards machine learning discovery of dual antibacterial drug–nanoparticle systems. Nanoscale 13, 17854–17870 (2021).
Nocedo-Mena, D. et al. Modeling antibacterial activity with machine learning and fusion of chemical structure information with microorganism metabolic networks. J. Chem. Inf. Model. 59, 1109–1120 (2019).
Article CAS PubMed Google Scholar
Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).
Article CAS PubMed Google Scholar
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).
Article CAS PubMed Google Scholar
Hughes, J., Rees, S., Kalindjian, S. & Philpott, K. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).
Article CAS PubMed PubMed Central Google Scholar
Ma, Y. et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 40, 921–931 (2022).
Article CAS PubMed Google Scholar
Torres, M. D. T. et al. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell 187, 5453–5467 (2024).
Article CAS PubMed Google Scholar
Santos-Júnior, C. D. et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 187, 3761–3778.e16 (2024).
Pane, K. et al. Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational–experimental platform. ACS Synth. Biol. 7, 2105–2115 (2018).
Article CAS PubMed Google Scholar
Cesaro, A. et al. Synthetic antibiotic derived from sequences encrypted in a protein from human plasma. ACS Nano 16, 1880–1895 (2022).
Article CAS PubMed Google Scholar
Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259.e14 (2019).
Article CAS PubMed PubMed Central Google Scholar
Li, H. et al. FSPP: a tool for genome-wide prediction of smORF-encoded peptides and their functions. Front. Genet. 9, 96 (2018).
Article PubMed PubMed Central Google Scholar
Torres, M. D. T., Sothiselvam, S., Lu, T. K. & de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol. 431, 3547–3567 (2019).
Article CAS PubMed Google Scholar
Torres, M. D. T., Cesaro, A. & de la Fuente-Nunez, C. Peptides from non-immune proteins target infections through antimicrobial and immunomodulatory properties. Trends Biotechnol. 43, 184–205 (2025).
Article CAS PubMed Google Scholar
Yuanyuan, J. & Xinqiang, Y. Micropeptides identified from human genomes. J. Proteome Res. 21, 865–873 (2022).
Martinez, T. F. et al. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins. Cell Metab. 35, 166–183.e11 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ruiz-Orera, J. & Albà, M. M. Translation of small open reading frames: roles in regulation and evolutionary innovation. Trends Genet. 35, 186–198 (2019).
Article CAS PubMed Google Scholar
Sandmann, C.-L. et al. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames. Mol. Cell 83, 994–1011.e18 (2023).
Article CAS PubMed PubMed Central Google Scholar
Makarewich, C. A. & Olson, E. N. Mining for micropeptides. Trends Cell Biol. 27, 685–696 (2017).
Article CAS PubMed PubMed Central Google Scholar
Vitorino, R., Guedes, S., Amado, F., Santos, M. & Akimitsu, N. The role of micropeptides in biology. Cell. Mol. Life Sci. 78, 3285–3298 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sousa, M. E. & Farkas, M. H. Micropeptide. PLoS Genet. 14, e1007764 (2018).
Article PubMed PubMed Central Google Scholar
Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403 (2019).
Article CAS PubMed Google Scholar
Torres, M. D. T., Cao, J., Franco, O. L., Lu, T. K. & de la Fuente-Nunez, C. Synthetic biology and computer-based frameworks for antimicrobial peptide discovery. ACS Nano 15, 2143–2164 (2021).
Comments (0)