Controlled anionic polymerization mediated by carbon dioxide

Ali, U., Karim, K. J. B. A. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55, 678–705 (2015).

Article  CAS  Google Scholar 

Rösler, A., Vandermeulen, G. W. M. & Klok, H.-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 64, 270–279 (2012).

Article  Google Scholar 

Perumal, S., Atchudan, R. & Lee, W. A review of polymeric micelles and their applications. Polymers 14, 2510 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Webster, O. W. The discovery and commercialization of group transfer polymerization. J. Polym. Sci. A 38, 2855–2860 (2000).

Article  CAS  Google Scholar 

Destarac, M. Controlled radical polymerization: industrial stakes, obstacles and achievements. Macromol. React. Eng. 4, 165–179 (2010).

Article  CAS  Google Scholar 

Truong, N. P., Jones, G. R., Bradford, K. G. E., Konkolewicz, D. & Anastasaki, A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem. 5, 859–869 (2021).

Article  CAS  PubMed  Google Scholar 

Shanmugam, S. & Matyjaszewski, K. in Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies Vol. 1 (eds Matyjaszewski, K. et al.) 1–39 (American Chemical Society, 2018).

Ntetsikas, K., Ladelta, V., Bhaumik, S. & Hadjichristidis, N. Quo vadis carbanionic polymerization? ACS Poly. Au 3, 158–181 (2023).

Article  CAS  Google Scholar 

Hirao, A., Goseki, R. & Ishizone, T. Advances in living anionic polymerization: from functional monomers, polymerization systems, to macromolecular architectures. Macromolecules 47, 1883–1905 (2014).

Article  CAS  Google Scholar 

Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 31, 1068–1132 (2006).

Article  CAS  Google Scholar 

Ménard, A. D. & Trant, J. F. A review and critique of academic lab safety research. Nat. Chem. 12, 17–25 (2020).

Article  PubMed  Google Scholar 

Rathman, T. ‘L.’ & Schwindeman, J. A. Preparation, properties, and safe handling of commercial organolithiums: alkyllithiums, lithium sec-organoamides, and lithium alkoxides. Org. Process Res. Dev. 18, 1192–1210 (2014).

Article  CAS  Google Scholar 

Slavík, P., Trowse, B. R., O’Brien, P. & Smith, D. K. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat. Chem. 15, 319–325 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Ratkanthwar, K., Hadjichristidis, N. & Mays, J. W. in Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications (eds Hadjichristidis, N. & Hirao, A.) 19–60 (Springer, 2015).

Baskaran, D. & Müller, A. H. E. Anionic vinyl polymerization—50 years after Michael Szwarc. Prog. Polym. Sci. 32, 173–219 (2007).

Article  CAS  Google Scholar 

Grubbs, R. B. & Grubbs, R. H. 50th anniversary perspective: living polymerization—emphasizing the molecule in macromolecules. Macromolecules 50, 6979–6997 (2017).

Article  CAS  Google Scholar 

Baskaran, D. Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog. Polym. Sci. 28, 521–581 (2003).

Article  CAS  Google Scholar 

Varshney, S. K., Hautekeer, J. P., Fayt, R., Jerome, R. & Teyssie, P. Anionic polymerization of (meth)acrylic monomers. 4. Effect of lithium salts as ligands on the “living” polymerization of methyl methacrylate using monofunctional initiators. Macromolecules 23, 2618–2622 (1990).

Article  CAS  Google Scholar 

Zune, C., Archambeau, C., Dubois, P. & Jérôme, R. Effect of the solvent polarity on the living ligated anionic polymerization of tert-butyl methacrylate and copolymerization with methyl methacrylate. J. Polym. Sci. A 39, 1774–1785 (2001).

Article  Google Scholar 

Vlček, P. & Lochmann, L. Anionic polymerization of (meth)acrylate esters in the presence of stabilizers of active centres. Prog. Polym. Sci. 24, 793–873 (1999).

Article  Google Scholar 

Lochmann, L. & Lím, D. Preparation and properties of pure lithio esters of some carboxylic acids. J. Organomet. Chem. 50, 9–16 (1973).

Article  CAS  Google Scholar 

Carlotti, S., Desbois, P., Warzelhan, V. & Deffieux, A. Retarded anionic polymerization (RAP) of styrene and dienes. Polymer 50, 3057–3067 (2009).

Article  CAS  Google Scholar 

Li, Z. et al. Anionic living polymerization of alkyl methacrylate at ambient temperature and its mechanism research. J. Polym. Sci. A 57, 1130–1139 (2019).

Article  Google Scholar 

Kralisch, D., Ott, D. & Gericke, D. Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem. 17, 123–145 (2015).

Article  CAS  Google Scholar 

Webster, O. W. in New Synthetic Methods Vol. 167 (eds Abe, A. et al.) 1–34 (Springer, 2003).

McGraw, M. L. & Chen, E. Y.-X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 53, 6102–6122 (2020).

Article  CAS  Google Scholar 

Zhang, Y., Miyake, G. M. & Chen, E. Y.-X. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Ed. 49, 10158–10162 (2010).

Article  CAS  Google Scholar 

Zhang, Y. et al. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans. 41, 9119–9134 (2012).

Article  CAS  PubMed  Google Scholar 

Sanford, M. J., Van Zee, N. J. & Coates, G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci. 9, 134–142 (2018).

Article  CAS  PubMed  Google Scholar 

Varghese, J. K. et al. A new role for CO2: controlling agent of the anionic ring-opening polymerization of cyclic esters. Macromolecules 50, 6752–6761 (2017).

Article  CAS  Google Scholar 

Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

Article  CAS  PubMed  Google Scholar 

Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

Article  CAS  Google Scholar 

Ouchi, M. & Sawamoto, M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym. J. 50, 83–94 (2018).

Article  CAS  Google Scholar 

Uchiyama, M., Ohira, N., Yamashita, K., Sagawa, K. & Kamigaito, M. Proton transfer anionic polymerization with C-H bond as the dormant species. Nat. Chem. 16, 1630–1637 (2024).

Article  CAS  PubMed  Google Scholar 

Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

Article  CAS  PubMed  Google Scholar 

Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).

Article  CAS  PubMed  Google Scholar 

Naumann, S., Schmidt, F. G., Schowner, R., Frey, W. & Buchmeiser, M. R. Polymerization of methyl methacrylate by latent pre-catalysts based on CO2-protected N-heterocyclic carbenes. Polym. Chem. 4, 2731–2740 (2013).

Article  CAS  Google Scholar 

Wadhwa, K. et al. Influence of substitution of various functional groups on inhibition efficiency of TEMPO analogues on styrene polymerization. J. Polym. Res. 24, 201 (2017).

Article  Google Scholar 

Hunter, D. H., Hamity, M., Patel, V. & Perry, R. A. Crown ether catalysis of decarboxylation: a general survey of reactivity and detailed analysis of the triphenylacetate anion. Can. J. Chem. 56, 104–113 (1978).

Ar

Comments (0)

No login
gif