Structural insights into two thiamine diphosphate-dependent enzymes and their synthetic applications in carbon–carbon linkage reactions

Pohl, M., Lingen, B. & Müller, M. Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C—C bond formation. Chem. Eur. J. 8, 5288–5295 (2002).

Article  CAS  PubMed  Google Scholar 

Prajapati, S., von Pappenheim, F. R. & Tittmann, K. Frontiers in the enzymology of thiamin diphosphate-dependent enzymes. Curr. Opin. Struc. Biol. 76, 102441 (2022).

Article  CAS  Google Scholar 

Müller, M., Sprenger, G. A. & Pohl, M. C–C bond formation using ThDP-dependent lyases. Curr. Opin. Chem. Biol. 17, 261–270 (2013).

Article  PubMed  Google Scholar 

Dobiašová, H., Jurkaš, V., Both, P. & Winkler, M. Recent progress in the synthesis of α-hydroxy carbonyl compounds with ThDP-dependent carboligases. ChemCatChem. 16, e202301707 (2024).

Article  Google Scholar 

Dünkelmann, P. et al. Development of a donor–acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J. Am. Chem. Soc. 124, 12084–12085 (2002).

Article  PubMed  Google Scholar 

Beigi, M. et al. α-Hydroxy-β-keto acid rearrangement-decarboxylation: impact on thiamine diphosphate-dependent enzymatic transformations. Org. Biomol. Chem. 11, 252–256 (2013).

Article  CAS  PubMed  Google Scholar 

Beigi, M. et al. Regio- and stereoselective aliphatic–aromatic cross-benzoin reaction: enzymatic divergent catalysis. Chem. Eur. J. 22, 13999–14005 (2016).

Article  CAS  PubMed  Google Scholar 

Steitz, J. et al. Unifying scheme for the biosynthesis of acyl-branched sugars: extended substrate scope of thiamine-dependent enzymes. Angew. Chem. Int. Ed. 61, e202113405 (2022).

Article  CAS  Google Scholar 

Rother, D. et al. S-Selective mixed carboligation by structure-based design of the pyruvate decarboxylase from Acetobacter pasteurianus. ChemCatChem 3, 1587–1596 (2011).

Article  CAS  Google Scholar 

Loschonsky, T. et al. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C–C bond cleavage to C–C bond ligation. Angew. Chem. Int. Ed. 53, 14402–14406 (2014).

Article  CAS  Google Scholar 

Burgener, S., Cortina, N. S. & Erb, T. J. Oxalyl-CoA decarboxylase enables nucleophilic one-carbon extension of aldehydes to chiral α-hydroxy acids. Angew. Chem. Int. Ed. 59, 5526–5530 (2020).

Article  CAS  Google Scholar 

Dresen, C., Richter, M., Pohl, M., Lüdeke, S. & Müller, M. The enzymatic asymmetric conjugate umpolung reaction. Angew. Chem. Int. Ed. 49, 6600–6603 (2010).

Article  CAS  Google Scholar 

Xu, Y. Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).

Article  CAS  PubMed  Google Scholar 

Balskus, E. P. & Walsh, C. T. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J. Am. Chem. Soc. 130, 15260–15261 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Proschak, A. et al. Biosynthesis of the insecticidal xenocyloins in Xenorhabdus bovienii. Chem. Bio. Chem. 15, 369–372 (2014).

Article  CAS  PubMed  Google Scholar 

Sommer, B. et al. Detailed structure–function correlations of Bacillus subtilis acetolactate synthase. Chem. Bio. Chem. 16, 110–118 (2015).

Article  CAS  PubMed  Google Scholar 

Park, J. et al. Identification and biosynthesis of new acyloins from the thermophilic bacterium Thermosporothrix hazakensis SK20-1. Chem. Bio. Chem. 15, 527–532 (2014).

Article  CAS  PubMed  Google Scholar 

Su, L. et al. A ThDP-dependent enzymatic carboligation reaction involved in neocarazostatin A tricyclic carbazole formation. Org. Biomol. Chem. 14, 8679–8684 (2016).

Article  CAS  PubMed  Google Scholar 

Schieferdecker, S. et al. Biosynthesis of diverse antimicrobial and antiproliferative acyloins in anaerobic bacteria. ACS Chem. Biol. 14, 1490–1497 (2019).

Article  CAS  PubMed  Google Scholar 

D’Agostino, P. M., Seel, C. J., Ji, X. Q., Gulder, T. & Gulder, T. A. M. Biosynthesis of cyanobacterin, a paradigm for furanolide core structure assembly. Nat. Chem. Biol. 18, 652–658 (2022).

Article  PubMed  Google Scholar 

Rizzacasa, M. & Ricca, M. Chemistry and biology of acyloin natural products. Synthesis 55, 2273–2284 (2023).

Liu, Y. D., Li, Y. Y. & Wang, X. Y. Acetohydroxyacid synthases: evolution, structure, and function. Appl. Microbiol. Biotechnol. 100, 8633–8649 (2016).

Article  CAS  PubMed  Google Scholar 

Kobayashi, M., Tomita, T., Shin-ya, K., Nishiyama, M. & Kuzuyama, T. An unprecedented cyclization mechanism in the biosynthesis of carbazole alkaloids in Streptomyces. Angew. Chem. Int. Ed. 58, 13349–13353 (2019).

Article  CAS  Google Scholar 

Liu, T. et al. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem. Sci. 12, 12353–12364 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing, B. Y. et al. Crystal structure based mutagenesis of cattleyene synthase leads to the generation of rearranged polycyclic diterpenes. Angew. Chem. Int. Ed. 61, e202209785 (2022).

Article  CAS  Google Scholar 

Lou, T. T. et al. Structural insights into three sesquiterpene synthases for the biosynthesis of tricyclic sesquiterpenes and chemical space expansion by structure-based mutagenesis. J. Am. Chem. Soc. 145, 8474–8485 (2023).

Article  CAS  Google Scholar 

Li, X. M., Zee, O. P., Shin, H. J., Seo, Y. W. & Ahn, J. W. Soraphinol A, a new indole alkaloid from Sorangium cellulosum. Bull. Korean Chem. Soc. 28, 835–836 (2007).

Article  Google Scholar 

Uchida, R. et al. Kurasoins A and B, new protein farnesyltransferase inhibitors produced by Paecilomyces sp. FO-3684. I. Producing strain, fermentation, isolation, and biological activities. J. Antibiot. 49, 932–934 (1996).

Article  CAS  Google Scholar 

McCourt, J. A. & Duggleby, R. G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31, 173–210 (2006).

Article  CAS  PubMed  Google Scholar 

Du, Z. Y. et al. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16, 5634–5651 (2021).

Article  CAS  PubMed  Google Scholar 

Berthold, C. L., Moussatche, P., Richards, N. G. J. & Lindqvist, Y. Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J. Biol. Chem. 280, 41645–41654 (2005).

Article  CAS  PubMed  Google Scholar 

Berthold, C. L. et al. Crystallographic snapshots of oxalyl-CoA decarboxylase give insights into catalysis by nonoxidative ThDP-dependent decarboxylases. Structure 15, 853–861 (2007).

Article  CAS  PubMed  Google Scholar 

Lonhienne, T. et al. Structures of fungal and plant acetohydroxyacid synthases. Nature 586, 317–321 (2020).

Article  CAS  PubMed  Google Scholar 

Gleason, F. K. & Case, D. E. Activity of the natural algicide, cyanobacterin, on angiosperms. Plant Physiol. 80, 834–837 (1986).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X., Shimizu, Y., Steiner, J. R. & Clardy, J. Nostoclide I and II, extracellular metabolites from a symbiotic cyanobacterium, Nostoc sp., from the lichen Peltigera canina. Tetrahedron Lett. 34, 761–764 (1993).

Article 

Comments (0)

No login
gif