Pohl, M., Lingen, B. & Müller, M. Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C—C bond formation. Chem. Eur. J. 8, 5288–5295 (2002).
Article CAS PubMed Google Scholar
Prajapati, S., von Pappenheim, F. R. & Tittmann, K. Frontiers in the enzymology of thiamin diphosphate-dependent enzymes. Curr. Opin. Struc. Biol. 76, 102441 (2022).
Müller, M., Sprenger, G. A. & Pohl, M. C–C bond formation using ThDP-dependent lyases. Curr. Opin. Chem. Biol. 17, 261–270 (2013).
Dobiašová, H., Jurkaš, V., Both, P. & Winkler, M. Recent progress in the synthesis of α-hydroxy carbonyl compounds with ThDP-dependent carboligases. ChemCatChem. 16, e202301707 (2024).
Dünkelmann, P. et al. Development of a donor–acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J. Am. Chem. Soc. 124, 12084–12085 (2002).
Beigi, M. et al. α-Hydroxy-β-keto acid rearrangement-decarboxylation: impact on thiamine diphosphate-dependent enzymatic transformations. Org. Biomol. Chem. 11, 252–256 (2013).
Article CAS PubMed Google Scholar
Beigi, M. et al. Regio- and stereoselective aliphatic–aromatic cross-benzoin reaction: enzymatic divergent catalysis. Chem. Eur. J. 22, 13999–14005 (2016).
Article CAS PubMed Google Scholar
Steitz, J. et al. Unifying scheme for the biosynthesis of acyl-branched sugars: extended substrate scope of thiamine-dependent enzymes. Angew. Chem. Int. Ed. 61, e202113405 (2022).
Rother, D. et al. S-Selective mixed carboligation by structure-based design of the pyruvate decarboxylase from Acetobacter pasteurianus. ChemCatChem 3, 1587–1596 (2011).
Loschonsky, T. et al. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C–C bond cleavage to C–C bond ligation. Angew. Chem. Int. Ed. 53, 14402–14406 (2014).
Burgener, S., Cortina, N. S. & Erb, T. J. Oxalyl-CoA decarboxylase enables nucleophilic one-carbon extension of aldehydes to chiral α-hydroxy acids. Angew. Chem. Int. Ed. 59, 5526–5530 (2020).
Dresen, C., Richter, M., Pohl, M., Lüdeke, S. & Müller, M. The enzymatic asymmetric conjugate umpolung reaction. Angew. Chem. Int. Ed. 49, 6600–6603 (2010).
Xu, Y. Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).
Article CAS PubMed Google Scholar
Balskus, E. P. & Walsh, C. T. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J. Am. Chem. Soc. 130, 15260–15261 (2008).
Article CAS PubMed PubMed Central Google Scholar
Proschak, A. et al. Biosynthesis of the insecticidal xenocyloins in Xenorhabdus bovienii. Chem. Bio. Chem. 15, 369–372 (2014).
Article CAS PubMed Google Scholar
Sommer, B. et al. Detailed structure–function correlations of Bacillus subtilis acetolactate synthase. Chem. Bio. Chem. 16, 110–118 (2015).
Article CAS PubMed Google Scholar
Park, J. et al. Identification and biosynthesis of new acyloins from the thermophilic bacterium Thermosporothrix hazakensis SK20-1. Chem. Bio. Chem. 15, 527–532 (2014).
Article CAS PubMed Google Scholar
Su, L. et al. A ThDP-dependent enzymatic carboligation reaction involved in neocarazostatin A tricyclic carbazole formation. Org. Biomol. Chem. 14, 8679–8684 (2016).
Article CAS PubMed Google Scholar
Schieferdecker, S. et al. Biosynthesis of diverse antimicrobial and antiproliferative acyloins in anaerobic bacteria. ACS Chem. Biol. 14, 1490–1497 (2019).
Article CAS PubMed Google Scholar
D’Agostino, P. M., Seel, C. J., Ji, X. Q., Gulder, T. & Gulder, T. A. M. Biosynthesis of cyanobacterin, a paradigm for furanolide core structure assembly. Nat. Chem. Biol. 18, 652–658 (2022).
Rizzacasa, M. & Ricca, M. Chemistry and biology of acyloin natural products. Synthesis 55, 2273–2284 (2023).
Liu, Y. D., Li, Y. Y. & Wang, X. Y. Acetohydroxyacid synthases: evolution, structure, and function. Appl. Microbiol. Biotechnol. 100, 8633–8649 (2016).
Article CAS PubMed Google Scholar
Kobayashi, M., Tomita, T., Shin-ya, K., Nishiyama, M. & Kuzuyama, T. An unprecedented cyclization mechanism in the biosynthesis of carbazole alkaloids in Streptomyces. Angew. Chem. Int. Ed. 58, 13349–13353 (2019).
Liu, T. et al. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem. Sci. 12, 12353–12364 (2021).
Article CAS PubMed PubMed Central Google Scholar
Xing, B. Y. et al. Crystal structure based mutagenesis of cattleyene synthase leads to the generation of rearranged polycyclic diterpenes. Angew. Chem. Int. Ed. 61, e202209785 (2022).
Lou, T. T. et al. Structural insights into three sesquiterpene synthases for the biosynthesis of tricyclic sesquiterpenes and chemical space expansion by structure-based mutagenesis. J. Am. Chem. Soc. 145, 8474–8485 (2023).
Li, X. M., Zee, O. P., Shin, H. J., Seo, Y. W. & Ahn, J. W. Soraphinol A, a new indole alkaloid from Sorangium cellulosum. Bull. Korean Chem. Soc. 28, 835–836 (2007).
Uchida, R. et al. Kurasoins A and B, new protein farnesyltransferase inhibitors produced by Paecilomyces sp. FO-3684. I. Producing strain, fermentation, isolation, and biological activities. J. Antibiot. 49, 932–934 (1996).
McCourt, J. A. & Duggleby, R. G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31, 173–210 (2006).
Article CAS PubMed Google Scholar
Du, Z. Y. et al. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16, 5634–5651 (2021).
Article CAS PubMed Google Scholar
Berthold, C. L., Moussatche, P., Richards, N. G. J. & Lindqvist, Y. Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J. Biol. Chem. 280, 41645–41654 (2005).
Article CAS PubMed Google Scholar
Berthold, C. L. et al. Crystallographic snapshots of oxalyl-CoA decarboxylase give insights into catalysis by nonoxidative ThDP-dependent decarboxylases. Structure 15, 853–861 (2007).
Article CAS PubMed Google Scholar
Lonhienne, T. et al. Structures of fungal and plant acetohydroxyacid synthases. Nature 586, 317–321 (2020).
Article CAS PubMed Google Scholar
Gleason, F. K. & Case, D. E. Activity of the natural algicide, cyanobacterin, on angiosperms. Plant Physiol. 80, 834–837 (1986).
Article CAS PubMed PubMed Central Google Scholar
Yang, X., Shimizu, Y., Steiner, J. R. & Clardy, J. Nostoclide I and II, extracellular metabolites from a symbiotic cyanobacterium, Nostoc sp., from the lichen Peltigera canina. Tetrahedron Lett. 34, 761–764 (1993).
Comments (0)