Levy MT, McCaughan GW, Abbott CA et al (1999) Fibroblast activation protein: A cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis: Fibroblast activation protein: A cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in H. Hepatology 29:1768–1778. https://doi.org/10.1002/hep.510290631
Article CAS PubMed Google Scholar
Acharya PS, Zukas A, Chandan V et al (2006) Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 37:352–360. https://doi.org/10.1016/j.humpath.2005.11.020
Article CAS PubMed Google Scholar
Langbein T, Weber WA, Eiber M (2019) Future of theranostics: An outlook on precision oncology in nuclear medicine. J Nucl Med 60:13S-19S. https://doi.org/10.2967/jnumed.118.220566
Article CAS PubMed Google Scholar
Lindner T, Loktev A, Altmann A et al (2018) Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59:1415–1422. https://doi.org/10.2967/jnumed.118.210443
Article CAS PubMed Google Scholar
Toms J, Kogler J, Maschauer S et al (2020) Targeting fibroblast activation protein: Radiosynthesis and preclinical evaluation of an 18 F-labeled FAP inhibitor. J Nucl Med 61:1806–1813. https://doi.org/10.2967/jnumed.120.242958
Article CAS PubMed Google Scholar
Zheng J, Yao S (2020) [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with hepatic cancer. Eur J Nucl Med Mol Imaging 47:2078–2079. https://doi.org/10.1007/s00259-020-04847-2
Chen H, Pang Y, Wu J et al (2020) Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging 47:1820–1832. https://doi.org/10.1007/s00259-020-04769-z
Dendl K, Koerber SA, Finck R et al (2021) 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur J Nucl Med Mol Imaging 48:4089–4100. https://doi.org/10.1007/s00259-021-05378-0
Article CAS PubMed PubMed Central Google Scholar
Mori Y, Dendl K, Cardinale J et al (2023) FAPI PET: Fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology 306:e220749. https://doi.org/10.1148/radiol.220749
Niedermeyer J, Kriz M, Hilberg F et al (2000) Targeted disruption of mouse fibroblast activation protein. Mol Cell Biol 20:1089–1094. https://doi.org/10.1128/MCB.20.3.1089-1094.2000
Article CAS PubMed PubMed Central Google Scholar
Mathew S, Scanlan MJ, Mohan Raj BK et al (1995) The gene for fibroblast activation protein α (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics 25:335–337. https://doi.org/10.1016/0888-7543(95)80157-H
Article CAS PubMed Google Scholar
Wang XM (2008) Fibroblast activation protein and chronic liver disease. Front Biosci 13:3168. https://doi.org/10.2741/2918
Article CAS PubMed Google Scholar
Dendl K, Koerber SA, Kratochwil C et al (2021) FAP and FAPI-PET/CT in malignant and non-malignant diseases: A perfect symbiosis? Cancers (Basel) 13:4946. https://doi.org/10.3390/cancers13194946
Article CAS PubMed Google Scholar
Zhang X, Song W, Qin C et al (2021) Non-malignant findings of focal 68Ga-FAPI-04 uptake in pancreas. Eur J Nucl Med Mol Imaging 48:2635–2641. https://doi.org/10.1007/s00259-021-05194-6
Article CAS PubMed Google Scholar
Hotta M, Rieger AC, Jafarvand MG et al (2023) Non-oncologic incidental uptake on FAPI PET/CT imaging. Br J Radiol 96:20220463. https://doi.org/10.1259/bjr.20220463
Kim S-K, Kang KW, Roh JW et al (2005) Incidental ovarian 18F-FDG accumulation on PET: correlation with the menstrual cycle. Eur J Nucl Med Mol Imaging 32:757–763. https://doi.org/10.1007/s00259-005-1771-6
Article CAS PubMed Google Scholar
Nishizawa S, Inubushi M, Okada H (2005) Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers. Eur J Nucl Med Mol Imaging 32:549–556. https://doi.org/10.1007/s00259-004-1703-x
Navve D, Kaidar-Person O, Keidar Z (2013) Physiological 18F-FDG uptake patterns in female reproductive organs before and after chemotherapy treatments: assessment by PET/CT. Med Oncol 30:598. https://doi.org/10.1007/s12032-013-0598-4
Article CAS PubMed Google Scholar
Nishizawa S, Inubushi M, Ozawa F et al (2007) Physiological FDG uptake in the ovaries after hysterectomy. Ann Nucl Med 21:345–348. https://doi.org/10.1007/s12149-007-0029-8
Wang Q, Yang S, Tang W et al (2021) 68Ga-DOTA-FAPI-04 PET/CT as a promising tool for differentiating ovarian physiological uptake: Preliminary experience of comparative analysis with 18F-FDG. Front Med (Lausanne) 8:748683. https://doi.org/10.3389/fmed.2021.748683
Zhang X, Song W, Qin C et al (2022) Uterine uptake of 68Ga-FAPI-04 in uterine pathology and physiology. Clin Nucl Med 47:7–13. https://doi.org/10.1097/RLU.0000000000003968
Meyer C, Dahlbom M, Lindner T et al (2020) Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med 61:1171–1177. https://doi.org/10.2967/jnumed.119.236786
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Zhou Y, Tian R, Su M (2023) Physiological uptake characteristics of breast on 68Ga-FAPI-04 PET/CT. Mol Imaging Biol 25:1045–1053. https://doi.org/10.1007/s11307-023-01872-z
Article CAS PubMed Google Scholar
Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177:1053–1064. https://doi.org/10.2353/ajpath.2010.100105
Article PubMed PubMed Central Google Scholar
Critchley HOD, Maybin JA, Armstrong GM, Williams ARW (2020) Physiology of the endometrium and regulation of menstruation. Physiol Rev 100:1149–1179. https://doi.org/10.1152/physrev.00031.2019
Finn CA (1986) Implantation, menstruation and inflammation. Biol Rev Camb Philos Soc 61:313–328. https://doi.org/10.1111/j.1469-185x.1986.tb00657.x
Article CAS PubMed Google Scholar
Salamonsen LA, Woolley DE (1999) Menstruation: induction by matrix metalloproteinases and inflammatory cells. J Reprod Immunol 44:1–27. https://doi.org/10.1016/s0165-0378(99)00002-9
Article CAS PubMed Google Scholar
Moravek MB, Bulun SE (2015) Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Curr Opin Obstet Gynecol 27:276–283. https://doi.org/10.1097/GCO.0000000000000185
Article PubMed PubMed Central Google Scholar
Malik M, Britten J, Catherino WH (2020) Development and validation of hormonal impact of a mouse xenograft model for human uterine leiomyoma. Reprod Sci 27:1304–1317. https://doi.org/10.1007/s43032-019-00123-3
Comments (0)