Ali A, Zareen S, Park J, Ali H, Lim CJ, Bader ZE et al (2024) ABI2 promotes flowering by inhibiting OST1/ABI5-dependent FLC activation in Arabidopsis. J Exp Bot, Online ahead of print.
Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639. https://doi.org/10.1038/nrg3291
Article CAS PubMed Google Scholar
Auge GA, Penfield S, Donohue K (2019) Pleiotropy in developmental regulation by flowering-pathway genes: Is it an evolutionary constraint? New Phytol 224(1):55–70
Bernier G, Périlleux C (2005) A physiological overview of the genetics of flowering time control: flowering time control. Plant Biotechnol J 3:3–16. https://doi.org/10.1111/j.1467-7652.2004.00114.x
Article CAS PubMed Google Scholar
Busov V (2019) Plant development: dual roles of Poplar SVL in vegetative bud dormancy. Curr Biol 29:R68–R70. https://doi.org/10.1016/j.cub.2018.11.061
Article CAS PubMed Google Scholar
Chao L, Zhang Y, Zhang K, Guo D, Cui B, Wang X et al (2015) Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1. Frontiers in plant science. 6:454. https://doi.org/10.3389/fpls.2015.00454
Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD (2017) Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE 12(9):e0184129
PubMed PubMed Central Google Scholar
Cheng X, Wang Z-Y (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis Thaliana. Plant Journal: Cell Mol Biology 43:758–768. https://doi.org/10.1111/j.1365-313X.2005.02491.x
Cheng MC, Kathare PK, Paik I, Huq E (2021) Phytochrome signaling networks. Annu Rev Plant Biol 72:217–244
CAS PubMed PubMed Central Google Scholar
Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90(4):708–719
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I et al (2007) FT protein movement contributes to Long-Distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752
Article CAS PubMed Google Scholar
Fu L, Tan D, Sun X, Ding Z, Zhang J (2024) Extensive post-transcriptional regulation revealed by integrative transcriptome and proteome analyses in Salicylic acid-induced flowering in duckweed (Lemna gibba). Front Plant Sci 15:1331949
PubMed PubMed Central Google Scholar
Guo T, Mu Q, Wang J, Vanous AE, Onogi A, Iwata H et al (2020) Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Res 30(5):673–683
CAS PubMed PubMed Central Google Scholar
Hoecker U (2017) The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr Opin Plant Biol 37:63–69. https://doi.org/10.1016/j.pbi.2017.03.015
Article CAS PubMed Google Scholar
Hu C (2015) Effects of short-day treatment at seedling stage on early flowering and related gene expression in tobacco. Southwestern University, Chongqing
Jang S, Marchal V, Panigrahi K, Wenkel S, Soppe W, Deng X-W et al (2008) Arabidopsis COP1 shapes the Temporal pattern of CO accumulation conferring a photoperiod flowering response. EMBO J 27:1277–1288. https://doi.org/10.1038/emboj.2008.68
Article CAS PubMed PubMed Central Google Scholar
Jing Y, Guo Q, Zha P, Lin R (2019) The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis. Plant Cell Environ 42. https://doi.org/10.1111/pce.13557
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357
CAS PubMed PubMed Central Google Scholar
Kinoshita A, Richter R (2020) Genetic and molecular basis of floral induction in Arabidopsis Thaliana. J Exp Bot 71(9):2490–2504
CAS PubMed PubMed Central Google Scholar
Klocko A, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss S (2015) FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J 14. https://doi.org/10.1111/pbi.12431
Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-I et al (2010) Molecular characterization of FLOWERING LOCUS T-like genes of Apple (Malus X domestica Borkh). Plant Cell Physiol 51:561–575. https://doi.org/10.1093/pcp/pcq021
Article CAS PubMed Google Scholar
Kumar SV, Lucyshyn D, Jaege KE r, Alós E, Alvey E, Harberd NP et al (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature,;484(7393): 242–245
Lau OS, Deng X (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in plant science.; 17:584– 93. https://doi.org/10.1016/j.tplants.2012.05.004
Li W, Wang H, Yu D (2016) The Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol Plant 9. https://doi.org/10.1016/j.molp.2016.08.003
Li X, Liu C, Zhao Z, Ma D, Zhang J, Yang Y et al (2020) COR27 and COR28 are novel regulators of the COP1-HY5 regulatory hub and photomorphogenesis in Arabidopsis. Plant Cell 32(10):3139–3154
CAS PubMed PubMed Central Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods (San Diego Calif) 25(4):402–408
Lu S, Li Y, Wang J, Srinives P, Nan H, Cao D et al (2015) QTL mapping for flowering time in different latitude in soybean. Euphytica 206. https://doi.org/10.1007/s10681-015-1501-5
Lv B, Zhu J, Kong X, Ding Z (2021) Light participates in the auxin-dependent regulation of plant growth. J Integr Plant Biol 63(5):819–822
Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis Flowering-Time genes. Plant Cells 12:885–900. https://doi.org/10.2307/3871217
Osterlund M, Hardtke C, Wei N, Deng X, Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466. https://doi.org/10.1038/35013076
Article CAS PubMed Google Scholar
Podolec R, Ulm R (2018) Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol 45:18–25. https://doi.org/10.1016/j.pbi.2018.04.018
Article CAS PubMed Google Scholar
Roberts S (2010) Analysing RNA-Seq data with the DESeq package. Mol Biol 43(4):1–17
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22
CAS PubMed PubMed Central Google Scholar
Samach A, Onouchi H, Ditta G, Schwarz-Sommer ZS, Yanofsky M, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616. https://doi.org/10.1126/science.288.5471.1613
Article CAS PubMed Google Scholar
Shim JS, Jang G (2020) Environmental signal-dependent regulation of flowering time in rice. Int J Mol Sci 21(17):6155
CAS PubMed PubMed Central Google Scholar
Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173(1):5–15
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP et al (2021) Crucial cell signaling compounds crosstalk and integrative Multi-Omics techniques for salinity stress tolerance in plants. Front Plant Sci 12:670369
PubMed PubMed Central Google Scholar
Skalicky M, Kubes J, Vachova P, Hajihashemi S, Martinkova J, Hejnak V (2020) Effect of gibberellic acid on Growing-Point development of Non-Vernalized wheat plants under Long-Day conditions. Plants (Basel) 9(12):1735
Song Y, Shim J, Kinmonth-Schultz H, Imaizumi T (2014) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66. https://doi.org/10.1146/annurev-arplant-043014-115555
Su H, Liang J, Abou-Elwafa SF, Cheng H, Dou D, Ren Z et al (2021) ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol 21(1):453
Comments (0)