Transcriptomic analysis revealed that short-day treatment of seedlings promotes flowering in maize ( L.)

Ali A, Zareen S, Park J, Ali H, Lim CJ, Bader ZE et al (2024) ABI2 promotes flowering by inhibiting OST1/ABI5-dependent FLC activation in Arabidopsis. J Exp Bot, Online ahead of print.

Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639. https://doi.org/10.1038/nrg3291

Article  CAS  PubMed  Google Scholar 

Auge GA, Penfield S, Donohue K (2019) Pleiotropy in developmental regulation by flowering-pathway genes: Is it an evolutionary constraint? New Phytol 224(1):55–70

CAS  PubMed  Google Scholar 

Bernier G, Périlleux C (2005) A physiological overview of the genetics of flowering time control: flowering time control. Plant Biotechnol J 3:3–16. https://doi.org/10.1111/j.1467-7652.2004.00114.x

Article  CAS  PubMed  Google Scholar 

Busov V (2019) Plant development: dual roles of Poplar SVL in vegetative bud dormancy. Curr Biol 29:R68–R70. https://doi.org/10.1016/j.cub.2018.11.061

Article  CAS  PubMed  Google Scholar 

Chao L, Zhang Y, Zhang K, Guo D, Cui B, Wang X et al (2015) Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1. Frontiers in plant science. 6:454. https://doi.org/10.3389/fpls.2015.00454

Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD (2017) Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE 12(9):e0184129

PubMed  PubMed Central  Google Scholar 

Cheng X, Wang Z-Y (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis Thaliana. Plant Journal: Cell Mol Biology 43:758–768. https://doi.org/10.1111/j.1365-313X.2005.02491.x

Article  CAS  Google Scholar 

Cheng MC, Kathare PK, Paik I, Huq E (2021) Phytochrome signaling networks. Annu Rev Plant Biol 72:217–244

CAS  PubMed  PubMed Central  Google Scholar 

Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90(4):708–719

CAS  PubMed  Google Scholar 

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I et al (2007) FT protein movement contributes to Long-Distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752

Article  CAS  PubMed  Google Scholar 

Fu L, Tan D, Sun X, Ding Z, Zhang J (2024) Extensive post-transcriptional regulation revealed by integrative transcriptome and proteome analyses in Salicylic acid-induced flowering in duckweed (Lemna gibba). Front Plant Sci 15:1331949

PubMed  PubMed Central  Google Scholar 

Guo T, Mu Q, Wang J, Vanous AE, Onogi A, Iwata H et al (2020) Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Res 30(5):673–683

CAS  PubMed  PubMed Central  Google Scholar 

Hoecker U (2017) The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr Opin Plant Biol 37:63–69. https://doi.org/10.1016/j.pbi.2017.03.015

Article  CAS  PubMed  Google Scholar 

Hu C (2015) Effects of short-day treatment at seedling stage on early flowering and related gene expression in tobacco. Southwestern University, Chongqing

Google Scholar 

Jang S, Marchal V, Panigrahi K, Wenkel S, Soppe W, Deng X-W et al (2008) Arabidopsis COP1 shapes the Temporal pattern of CO accumulation conferring a photoperiod flowering response. EMBO J 27:1277–1288. https://doi.org/10.1038/emboj.2008.68

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jing Y, Guo Q, Zha P, Lin R (2019) The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis. Plant Cell Environ 42. https://doi.org/10.1111/pce.13557

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357

CAS  PubMed  PubMed Central  Google Scholar 

Kinoshita A, Richter R (2020) Genetic and molecular basis of floral induction in Arabidopsis Thaliana. J Exp Bot 71(9):2490–2504

CAS  PubMed  PubMed Central  Google Scholar 

Klocko A, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss S (2015) FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J 14. https://doi.org/10.1111/pbi.12431

Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-I et al (2010) Molecular characterization of FLOWERING LOCUS T-like genes of Apple (Malus X domestica Borkh). Plant Cell Physiol 51:561–575. https://doi.org/10.1093/pcp/pcq021

Article  CAS  PubMed  Google Scholar 

Kumar SV, Lucyshyn D, Jaege KE r, Alós E, Alvey E, Harberd NP et al (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature,;484(7393): 242–245

Lau OS, Deng X (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in plant science.; 17:584– 93. https://doi.org/10.1016/j.tplants.2012.05.004

Li W, Wang H, Yu D (2016) The Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol Plant 9. https://doi.org/10.1016/j.molp.2016.08.003

Li X, Liu C, Zhao Z, Ma D, Zhang J, Yang Y et al (2020) COR27 and COR28 are novel regulators of the COP1-HY5 regulatory hub and photomorphogenesis in Arabidopsis. Plant Cell 32(10):3139–3154

CAS  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods (San Diego Calif) 25(4):402–408

CAS  PubMed  Google Scholar 

Lu S, Li Y, Wang J, Srinives P, Nan H, Cao D et al (2015) QTL mapping for flowering time in different latitude in soybean. Euphytica 206. https://doi.org/10.1007/s10681-015-1501-5

Lv B, Zhu J, Kong X, Ding Z (2021) Light participates in the auxin-dependent regulation of plant growth. J Integr Plant Biol 63(5):819–822

CAS  PubMed  Google Scholar 

Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis Flowering-Time genes. Plant Cells 12:885–900. https://doi.org/10.2307/3871217

Article  CAS  Google Scholar 

Osterlund M, Hardtke C, Wei N, Deng X, Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466. https://doi.org/10.1038/35013076

Article  CAS  PubMed  Google Scholar 

Podolec R, Ulm R (2018) Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol 45:18–25. https://doi.org/10.1016/j.pbi.2018.04.018

Article  CAS  PubMed  Google Scholar 

Roberts S (2010) Analysing RNA-Seq data with the DESeq package. Mol Biol 43(4):1–17

Google Scholar 

Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22

CAS  PubMed  PubMed Central  Google Scholar 

Samach A, Onouchi H, Ditta G, Schwarz-Sommer ZS, Yanofsky M, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616. https://doi.org/10.1126/science.288.5471.1613

Article  CAS  PubMed  Google Scholar 

Shim JS, Jang G (2020) Environmental signal-dependent regulation of flowering time in rice. Int J Mol Sci 21(17):6155

CAS  PubMed  PubMed Central  Google Scholar 

Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173(1):5–15

CAS  PubMed  Google Scholar 

Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP et al (2021) Crucial cell signaling compounds crosstalk and integrative Multi-Omics techniques for salinity stress tolerance in plants. Front Plant Sci 12:670369

PubMed  PubMed Central  Google Scholar 

Skalicky M, Kubes J, Vachova P, Hajihashemi S, Martinkova J, Hejnak V (2020) Effect of gibberellic acid on Growing-Point development of Non-Vernalized wheat plants under Long-Day conditions. Plants (Basel) 9(12):1735

CAS  PubMed  Google Scholar 

Song Y, Shim J, Kinmonth-Schultz H, Imaizumi T (2014) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66. https://doi.org/10.1146/annurev-arplant-043014-115555

Su H, Liang J, Abou-Elwafa SF, Cheng H, Dou D, Ren Z et al (2021) ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol 21(1):453

CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif