Protective effects of -acetylcysteine against titanium dioxide nanoparticles-induced kidney damage in rats

Abdel-Halim KY, Osman SR, Abuzeid MAF, El-Danasoury HTM, Khozimy AM (2022) Apoptotic and histopathological defects enhanced by titanium dioxide nanoparticles in male mice after short-term exposure. Toxicol Rep 19(9):1331–1346. https://doi.org/10.1016/j.toxrep.2022.06.003

Article  CAS  Google Scholar 

Abdou KH, Moselhy WA, Mohamed HM, El-Nahass ES, Khalifa AG (2019) Moringa oleifera leaves extract protects titanium dioxide nanoparticles-induced nephrotoxicity via Nrf2/HO-1 signaling and amelioration of oxidative stress. Biol Trace Elem Res 187(1):181–191. https://doi.org/10.1007/s12011-018-1366-2

Article  CAS  PubMed  Google Scholar 

Abu-Dief EE, Abdel-Aziz H, Nor-Eldin EK, Khalil KM, Ragab EE (2018) Ultrastructural, histochemical and biochemical effects of titanium dioxide nanoparticles on adult male albino rat liver and possible prophylactic effects of milk Thistle seeds. Egypt J Histol 41(1):1–10. https://doi.org/10.21608/EJH.2018.7517

Article  Google Scholar 

Adeyemi OS, Ishii K, Kato K (2023) L-tryptophan-titanium oxide nanoparticles showed selective anti-Toxoplasma gondii activity and improved host biocompatibility. Biomed Pharmacother 162:114597. https://doi.org/10.1016/j.biopha.2023.114597

Article  CAS  PubMed  Google Scholar 

Al-Rasheed NM, Faddah LM, Mohamed AM, Abdel Baky NA, Al-Rasheed NM, Mohammad RA (2013) Potential impact of Quercetin and idebenone against immuno- inflammatory and oxidative renal damage induced in rats by titanium dioxide nanoparticles toxicity. J Oleo Sci 62(11):961–971. https://doi.org/10.5650/jos.62.961

Article  CAS  PubMed  Google Scholar 

Alidadi H, Khorsandi L, Shirani M (2018) Effects of Quercetin on tubular cell apoptosis and kidney damage in rats induced by titanium dioxide nanoparticles. Malays J Med Sci 25(2):72–81. https://doi.org/10.21315/mjms2018.25.2.8

Article  PubMed  PubMed Central  Google Scholar 

Amara S, Khemissi W, Mrad I, Rihane N, Ben Slama I, Mir LE, Jeljeli M, Ben Rhouma K, Abdelmelek H, Sakly M (2013) Effect of TiO2 nanoparticles on emotional behavior and biochemical parameters in adult Wistar rats. Gen Physiol Biophys 32(2):229–234. https://doi.org/10.4149/gpb_2013015

Article  CAS  PubMed  Google Scholar 

Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB (2019) Kidney cells regeneration: dedifferentiation of tubular epithelium, resident stem cells and possible niches for renal progenitors. Int J Mol Sci 15(24):6326. https://doi.org/10.3390/ijms20246326

Article  CAS  Google Scholar 

Babaeenezhad E, Dezfoulian O, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Ahmadvand H (2023) Exogenous glutathione protects against gentamicin-induced acute kidney injury by inhibiting NF-κB pathway, oxidative stress, and apoptosis and regulating PCNA. Drug Chem Toxicol 46(3):441–450. https://doi.org/10.1080/01480545.2022.2049290

Article  CAS  PubMed  Google Scholar 

Bakour M, Hammas N, Laaroussi H, Ousaaid D, Fatemi HE, Aboulghazi A, Soulo N, Lyoussi B (2021) Moroccan bee bread improves biochemical and histological changes of the brain, liver, and kidneys induced by titanium dioxide nanoparticles. Biomed Res Int 23(2021):6632128. https://doi.org/10.1155/2021/6632128

Article  CAS  Google Scholar 

Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human Health—a review. Biol Trace Elem Res 193(1):118–129. https://doi.org/10.1007/s12011-019-01706-6

Article  CAS  PubMed  Google Scholar 

Bautista-Pérez R, Cano-Martínez A, Herrera-Rodríguez MA, Ramos-Godinez MdP, Pérez Reyes OL, Chirino YI, Rodríguez Serrano ZJ, López-Marure R (2024) Oral exposure to titanium dioxide E171 and zinc oxide nanoparticles induces Multi-Organ damage in rats: role of ceramide. Int J Mol Sci 25:5881. https://doi.org/10.3390/ijms25115881

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beydoun D, Amal R, Low G, McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1:439–458. https://doi.org/10.1023/A:1010044830871

Article  CAS  Google Scholar 

Canli EG, Atli G, Canli M (2017) Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ Toxicol Pharmacol 50:145–150. https://doi.org/10.1016/j.etap.2017.02.007

Article  CAS  PubMed  Google Scholar 

Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol Vitro 27(1):330–338. https://doi.org/10.1016/j.tiv.2012.08.021

Article  CAS  Google Scholar 

Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29(4):330–337. https://doi.org/10.1002/jat.1414

Article  CAS  PubMed  Google Scholar 

Choi SM, Lee PH, An MH, Yun-Gi L, Park S, Baek AR, Jang AS (2022) N-acetylcysteine decreases lung inflammation and fibrosis by modulating ROS and Nrf2 in mice model exposed to particulate matter. Immunopharmacol Immunotoxicol 44(6):832–837. https://doi.org/10.1080/08923973.2022.2086138

Article  CAS  PubMed  Google Scholar 

Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, Hu R, Hong M, Hong F (2011) Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res 96(1):221–229. https://doi.org/10.1002/jbm.a.32976

Article  CAS  Google Scholar 

Dekanski D, Spremo-Potparević B, Bajić V, Živković L, Topalović D, Sredojević DN, Lazić V, Nedeljković JM (2018) Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food Chem Toxicol 115:42–48. https://doi.org/10.1016/j.fct.2018.02.064

Article  CAS  PubMed  Google Scholar 

Delen O, Uz YH (2021) Protective effect of pyrrolidine dithiocarbamate against methotrexate-induced testicular damage. Hum Exp Toxicol 40(12 suppl):164–177. https://doi.org/10.1177/09603271211035674

Article  CAS  Google Scholar 

Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG (2022) Systemic effect of TiO2 micro- and nanoparticles after acute exposure in a murine model. J Biomed Mater Res B Appl Biomater 110(7):1563–1572. https://doi.org/10.1002/jbm.b.35017

Article  CAS  PubMed  Google Scholar 

Dong G, Li Q, Yu C, Wang Q, Zuo D, Li X (2024) N-acetylcysteine protects against diazinon-induced histopathological damage and apoptosis in renal tissue of rats. Toxicol Res 40(2):285–295. https://doi.org/10.1007/s43188-024-00226-3

Article  CAS  PubMed  Google Scholar 

Elnagar AMB, Ibrahim A, Soliman AM (2018) Histopathological effects of titanium dioxide nanoparticles and the possible protective role of N-acetylcysteine on the testes of male albino rats. Int J Fertil Steril 12(3). https://doi.org/10.22074/ijfs.2018.5389

Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W, Fadl SE, Soliman A, Aboubakr M (2021) Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep 11(1):13979. https://doi.org/10.1038/s41598-021-93196-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fadda LM, Mohamed AM, Ali HM, Hagar H, Aldossari M (2018) Prophylactic administration of carnosine and melatonin abates the incidence of renal toxicity induced by an over dose of titanium dioxide nanoparticles. J Biochem Mol Toxicol 32(3):e22040. https://doi.org/10.1002/jbt.22040

Article  CAS  PubMed  Google Scholar 

Fan H, Jianwei L, Min S, Jianhua Z (2024) N-acetylcysteine protects septic acute kidney injury by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis. Iran J Basic Med Sci 27(7). https://doi.org/10.22038/ijbms.2024.72882.15853

Gholinejad Z, Ansari MHK, Rasmi Y (2019) Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. J Trace Elem Med Biol 54:27–35. https://doi.org/10.1016/j.jtemb.2019.03.008

Article  CAS  PubMed  Google Scholar 

Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, Sang X, Sun Q, Cheng Z, Cheng J, Hu R, Hong F (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 195:365–370. https://doi.org/10.1016/j.jhazmat.2011.08.055

Article  CAS  PubMed  Google Scholar 

Gui S, Li B, Zhao X, Sheng L, Hong J, Yu X, Sang X, Sun Q, Ze Y, Wang L, Zhang R, Cheng Z, Cheng J, Hu R, Hong F (2013) Renal injury and Nrf2 modulation in mouse kidney following chronic exposure to TiO2 nanoparticles. J Agric Food Chem 61(37):8959–8968. https://doi.org/10.1021/jf402387e

Article  CAS  PubMed 

Comments (0)

No login
gif