Direct exposure with exogenous mitochondria reduce colistin-induced mitochondrial dysfunction and cellular damages in isolated rat renal proximal tubular cells

Arjmand A, Mashhadi M, Kaveh A, Kamranfar F, Seydi E, Pourahmad J (2023a) Mitochondrial transplantation therapy against Ifosfamide induced toxicity on rat renal proximal tubular cells. Drug Res 73:113–120

Article  CAS  Google Scholar 

Arjmand A, Faizi M, Rezaei M, Pourahmad J (2023b) The effect of donor rat gender in mitochondrial transplantation therapy of Cisplatin-Induced toxicity on rat renal proximal tubular cells. Innov J Pharm Res 22:e135666

Arjmand A, Shiranirad S, Ameritorzani F, Kamranfar F, Seydi E, Pourahmad J (2023c) Mitochondrial transplantation against gentamicin-induced toxicity on rat renal proximal tubular cells: the higher activity of female rat mitochondria. In: Vitro cellular & developmental biology-animal 1–10

Dai C, Li J, Tang S, Li J, Xiao X (2014a) Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and Endoplasmic reticulum pathways. Antimicrob Agents Chemother 58:4075–4085. https://doi.org/10.1128/aac.00070-14

Article  PubMed  PubMed Central  Google Scholar 

Dai C, Li J, Tang S, Li J, Xiao X (2014b) Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and Endoplasmic reticulum pathways. Antimicrob Agents Chemother 58:4075–4085

Article  PubMed  PubMed Central  Google Scholar 

Dai C, Tang S, Wang Y, Velkov T, Xiao X (2017) Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J Antimicrob Chemother 72:2562–2569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai C, Tang S, Biao X, Xiao X, Chen C, Li J (2019) Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice. Mol Biol Rep 46:1963–1972. https://doi.org/10.1007/s11033-019-04646-5

Article  CAS  PubMed  Google Scholar 

Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, Li J, Velkov T (2014a) A secondary mode of action of polymyxins against Gram-negative bacteria involves the Inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo) 67:147–151. https://doi.org/10.1038/ja.2013.111

Article  CAS  PubMed  Google Scholar 

Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, Li J, Velkov T (2014b) A secondary mode of action of polymyxins against Gram-negative bacteria involves the Inhibition of NADH-quinone oxidoreductase activity. J Antibiot 67:147–151

Article  CAS  Google Scholar 

Dowling PM (2013) Peptide Antibiotics: polymyxins, glycopeptides, bacitracin, and fosfomycin. In Antimicrobial therapy in veterinary medicine, pp 189–198

El-Sayed Ahmed MAE-G, Zhong L-L, Shen C, Yang Y, Doi Y, Tian G-B (2020) Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect 9:868–885

Elguindy MM, Nakamaru-Ogiso E (2015) Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2). J Biol Chem 290:20815–20826

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faizi M, Seydi E, Abarghuyi S, Salimi A, Nasoohi S, Pourahmad J (2016) A search for mitochondrial damage in Alzheimer’s disease using isolated rat brain mitochondria. Iran J Pharm Research: IJPR 15:185

PubMed Central  Google Scholar 

Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M (2019a) Molecular mechanisms of colistin-induced nephrotoxicity. Molecules 24:653

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M (2019b) Molecular mechanisms of Colistin-Induced nephrotoxicity. Molecules 24. https://doi.org/10.3390/molecules24030653

Gogry FA, Siddiqui MT, Sultan I, Haq QMR (2021) Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Front Med 8:677720

Article  Google Scholar 

Gollihue JL, Rabchevsky AG (2017) Prospects for therapeutic mitochondrial transplantation. Mitochondrion 35:70–79

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hargreaves IP, Al Shahrani M, Wainwright L, Heales SJ (2016) Drug-induced mitochondrial toxicity. Drug Saf 39:661–674

Article  CAS  PubMed  Google Scholar 

Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

Article  CAS  PubMed  Google Scholar 

Hosseini M-J, Hassanbeigloo A, Abbasi H, Arjmand A, Sherkat F, Pourahmad J (2024a) Mitotherapy inhibits against Tenofovir induced nephrotoxicity on rat renal proximal tubular cells. Biochem Biophys Rep 38:101669. https://doi.org/10.1016/j.bbrep.2024.101669

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosseini MJ, Hassanbeigloo A, Abbasi H, Arjmand A, Sherkat F, Pourahmad J (2024b) Mitotherapy inhibits against Tenofovir induced nephrotoxicity on rat renal proximal tubular cells. Biochem Biophys Rep 38:101669. https://doi.org/10.1016/j.bbrep.2024.101669

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jafari F, Elyasi S (2021) Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Rev Clin Pharmacol 14:1113–1131. https://doi.org/10.1080/17512433.2021.1933436

Article  CAS  PubMed  Google Scholar 

Kubat GB, Ozler M, Ulger O, Ekinci O, Atalay O, Celik E, Safali M, Budak MT (2021) The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. J Biochem Mol Toxicol 35:e22612

Kuretu A, Arineitwe C, Mothibe M, Ngubane P, Khathi A, Sibiya N (2023) Drug-induced mitochondrial toxicity: risks of developing glucose handling impairments. Front Endocrinol 14:300

Article  Google Scholar 

Lin RZ, Im GB, Luo AC, Zhu Y, Hong X, Neumeyer J, Tang HW, Perrimon N, Melero-Martin JM (2024) Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature 629:660–668. https://doi.org/10.1038/s41586-024-07340-0

Article  CAS  PubMed  Google Scholar 

McCully JD, Levitsky S, Nido D, P. J., Cowan DB (2016) Mitochondrial transplantation for therapeutic use. Clin Translational Med 5:1–13

Article  Google Scholar 

Mirjalili M, Mirzaei E, Vazin A (2022) Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 27:64. https://doi.org/10.1186/s40001-022-00689-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mogi T, Murase Y, Mori M, Shiomi K, Ōmura S, Paranagama MP, Kita K (2009) Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem 146:491–499

Article  CAS  PubMed  Google Scholar 

Pallotti F, Lenaz G (2007) Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol 80:3–44. https://doi.org/10.1016/s0091-679x(06)80001-4

Article  CAS  PubMed  Google Scholar 

Park A, Oh M, Lee SJ, Oh K-J, Lee E-W, Lee SC, Bae K-H, Han BS, Kim WK (2021) Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. Int J Mol Sci 22:4793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pourahmad J, O’Brien PJ (2001) Biological reactive intermediates that mediate chromium (VI) toxicity. In Advances in experimental medicine and biology, vol 500, pp 203–207. https://doi.org/10.1007/978-1-4615-0667-6_27

Pourahmad J, O’Brien PJ (2000) Contrasting role of Na+ ions in modulating Cu +2 or Cd+2 induced hepatocyte toxicity. Chemico-Biol Interact 126:159–169. https://doi.org/10.1016/S0009-2797(00)00162-9

Article  CAS  Google Scholar 

Pourahmad J, Eskandari MR, Nosrati M, Kobarfard F, Khajeamiri AR (2010a) Involvement of mitochondrial/lysosomal toxic cross-talk in ecstasy induced liver toxicity under hyperthermic condition. Eur J Pharmacol 643:162–169

Article  CAS  PubMed  Google Scholar 

Pourahmad J, Eskandari MR, Shakibaei R, Kamalinejad M (2010b) A search for hepatoprotective activity of fruit extract of Mangifera indica L. against oxidative stress cytotoxicity. Plant Foods Hum Nutr (Dordrecht, Netherlands) 65:83–89. https://doi.org/10.1007/s11130-010-0161-9

Rodríguez AG, Rodríguez JZ, Barreto A, Sanabria-Barrera S, Iglesias J, Morales L (2023) Impact of acute high glucose on mitochondrial function in a model of endothelial cells: role of PDGF-C. Int J Mol Sci 24:4394

Article  PubMed  PubMed Central  Google Scholar 

Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M (2022) Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 29:1304–1317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seydi E, Andalib M, Yaghoubi S, Fakhri A, Yuzugulen J, Arjmand A, Pourahmad J (2024a) Mitochondrial transplantat

Comments (0)

No login
gif