Ab-Hamid N, Omar N, Ismail CAN, Long I (2023) Diabetes and cognitive decline: challenges and future direction. World J Diabet 14:795–807. https://doi.org/10.4239/wjd.v14.i6.795
Albai O, Frandes M, Timar R, Roman D, Timar B (2019) Risk factors for developing dementia in type 2 diabetes mellitus patients with mild cognitive impairment. Neuropsy Dis Treat 15:167–175. https://doi.org/10.2147/NDT.S189905
Alharbi KS, Afzal M, Alzarea SI, Khan SA, Alomar FA, Kazmi I (2022) Rosinidin protects streptozotocin-induced memory impairment-activated neurotoxicity by suppressing oxidative stress and inflammatory mediators in rats. Medicina 58:993. https://doi.org/10.3390/medicina58080993
Article PubMed PubMed Central Google Scholar
Asl SS, Amiri I, Samzadeh-Kermani A, Abbasalipourkabir R, Gholamigeravand B (2021) Shahidi S (2021) Chitosan-coated Selenium nanoparticles enhance the efficiency of stem cells in the neuroprotection of streptozotocin-induced neurotoxicity in male rats. The International J Biochem Cell Biol 141:106089. https://doi.org/10.1016/j.biocel.2021.106089
Behera A, Pradhan SP, Tejaswani P, Sa N, Pattnaik S, Sahu PK (2023) Ameliorative and neuroprotective effect of core-shell type Se@ Au conjugated hesperidin nanoparticles in diabetes-induced cognitive impairment. Mol Neurobiol 60:7329–7345. https://doi.org/10.1007/s12035-023-03539-w
Article CAS PubMed Google Scholar
Bohnen NI, Grothe MJ, Ray NJ, Müller ML, Teipel SJ (2018) Recent advances in cholinergic imaging and cognitive decline—revisiting the cholinergic hypothesis of dementia. Curr Geriatrics Rep 7:1–1. https://doi.org/10.1007/s13670-018-0234-4
Brewer JB, Gabrieli JDE, Preston AR, Vaidya CJ, Rosen AC (2007) Memory. In: Goetz CG (ed) Textbook of Clinical Neurology, 3rd edn. Saunders, Elsevier Inc, pp 63–77
Butterfield DA, Di Domenico F, Barone E (2014) Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta (BBA)-Mol Basis Dis 1842:1693–1706. https://doi.org/10.1016/j.bbadis.2014.06.010
Chang Y, Cho B, Lee E, Kim J, Yoo J, Sung JS, Kwon Y, Kim J (2021) Electromagnetized gold nanoparticles improve neurogenesis and cognition in the aged brain. Biomaterials 278:121157. https://doi.org/10.1016/j.biomaterials.2021.121157
Article CAS PubMed Google Scholar
Chen ZR, Huang JB, Yang SL, Hong FF (2022) Role of cholinergic signaling in Alzheimer’s disease. Molecules 27:1816. https://doi.org/10.3390/molecules27061816
Article CAS PubMed PubMed Central Google Scholar
de la Monte SM, Tong M (2009) Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimer’s Dis 17:817–825. https://doi.org/10.3233/JAD-2009-1098
Ebokaiwe AP, Okori S, Nwankwo JO, Ejike CE (2021) Osawe SO (2021) Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 394:591–602. https://doi.org/10.1007/s00210-020-02000-2
Fuchs H, Binder R, Greischel A (2009) Tissue distribution of the novel DPP-4 inhibitor BI 1356 is dominated by saturable binding to its target in rats. Biopharma Drug Dis 30:229–240. https://doi.org/10.1002/bdd.662
Ghasemi A, Jeddi S (2023) Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI J 22:274. https://doi.org/10.17179/excli2022-5720
Gholamigeravand B, Shahidi S, Amiri I, Samzadeh-Kermani A, Abbasalipourkabir R, Soleimani Asl S (2021) Administration of selenium nanoparticles reverses streptozotocin-induced neurotoxicity in the male rats. Metab Brain Dis 36:1259–1266. https://doi.org/10.1007/s11011-021-00713-8
Article CAS PubMed Google Scholar
Hajialyani M, Hosein Farzaei M, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E (2019) Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules 24:648. https://doi.org/10.3390/molecules24030648
Article CAS PubMed PubMed Central Google Scholar
Halder N, Lal G (2021) Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol 12:660342. https://doi.org/10.3389/fimmu.2021.660342
Article CAS PubMed PubMed Central Google Scholar
Hall JE (2010) Guyton and Hall text book of medical physiology, 12th edn. Elsevier Inc, Saunders, pp 714–727
He YL, Serra D, Wang Y, Campestrini J, Riviere GJ, Deacon CF, Holst JJ, Schwartz S, Nielsen JC, Ligueros-Saylan M (2007) Pharmacokinetics and pharmacodynamics of vildagliptin in patients with type 2 diabetes mellitus. Clin Pharmacokin 46:577–588. https://doi.org/10.2165/00003088-200746070-00003
Hendawy AS, El-Lakkany NM, Mantawy EM, Hammam OA, Botros SS, El-Demerdash E (2022) Vildagliptin alleviates liver fibrosis in NASH diabetic rats via modulation of insulin resistance, oxidative stress, and inflammatory cascades. Life Sci 304:120695. https://doi.org/10.1016/j.lfs.2022.120695
Article CAS PubMed Google Scholar
Hira S, Saleem U, Anwar F, Sohail MF, Raza Z, Ahmad B (2019) β-Carotene: a natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimer’s disease. Biomolecules 9:441. https://doi.org/10.3390/biom9090441
Article CAS PubMed PubMed Central Google Scholar
Hou K, Zhao J, Wang H, Li B, Li K, Shi X, Wan K, Ai J, Lv J, Wang D, Huang Q (2020) Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun 11:4790. https://doi.org/10.1038/s41467-020-18525-2
Article CAS PubMed PubMed Central Google Scholar
Hsieh CL, Yang MH, Chyau CC, Chiu CH, Wang HE, Lin YC, Chiu WT, Peng RY (2007) Kinetic analysis on the sensitivity of glucose-or glyoxal-induced LDL glycation to the inhibitory effect of Psidium guajava extract in a physiomimic system. Biosystems 88:92–100. https://doi.org/10.1016/j.biosystems.2006.04.004
Article CAS PubMed Google Scholar
Huang Q, Liao C, Ge F, Ao J, Liu T (2022) Acetylcholine bidirectionally regulates learning and memory. J Neurorestoratol 10:100002. https://doi.org/10.1016/j.jnrt.2022.100002
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC (2004) Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481. https://doi.org/10.2337/diabetes.53.2.474
Article CAS PubMed Google Scholar
Jung S, Jeon S, Yong K (2010) Fabrication and Characterisation of flower-like CuO–ZnO heterostructure nanowire arrays by photochemical deposition. Nanotechnology 22:015606. https://doi.org/10.1088/0957-4484/22/1/015606
Article CAS PubMed Google Scholar
Justin Thenmozhi A, William Raja TR, Manivasagam T, Janakiraman U, Essa MM (2017) Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 20:360–368. https://doi.org/10.1080/1028415X.2016.1144846
Article CAS PubMed Google Scholar
Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, Ullah MF, Bibi H, Bafakeeh OT, Khedher NB, Eldin SM (2022) Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12:1386. https://doi.org/10.3390/catal12111386
Kravitz E, Schmeidler J, Schnaider Beeri M (2013) Type 2 diabetes and cognitive compromise: potential roles of diabetes-related therapies. Endocrinol Metab Clin North Am 42:489–501. https://doi.org/10.1016/j.ecl.2013.05.009
Article PubMed PubMed Central Google Scholar
Lee D, Kim N, Jeon SH, Gee MS, Ju YJ, Jung MJ, Cho JS, Lee Y, Lee S, Lee JK (2022) Hesperidin improves memory function by enhancing neurogenesis in a mouse model of Alzheimer’s disease. Nutrients 14:3125. https://doi.org/10.3390/nu14153125
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Zhou H, Yin T, Gong Y, Yuan G, Chen L, Liu J (2019) Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Coll Interf Sci 552:388–400. https://doi.org/10.1016/j.jcis.2019.05.066
Comments (0)