A New Perspective on Mechanisms of Neurodegeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis: the Early and Critical Role of Platelets in Neuro/Axonal Loss

Aharoni R, Eilam R, Arnon R (2021) Astrocytes in multiple sclerosis—Essential constituents with diverse multifaceted functions. Int J Mol Sci 22:5904. https://doi.org/10.3390/ijms22115904

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad I, Omura S, Sato F, Park AM, Khadka S, Gavins FNE et al (2024) Exploring the role of platelets in virus-induced inflammatory demyelinating disease and myocarditis. Int J Mol Sci 25:3460. https://doi.org/10.3390/ijms25063460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alfredsson L, Olsson T (2019) Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med 9:a028944. https://doi.org/10.1101/cshperspect.a028944

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berghoff SA, Düking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N et al (2017) (2017) Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun 5:94. https://doi.org/10.1186/s40478-017-0497-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH (2023) Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 43:1835–1877. https://doi.org/10.1002/med.21965

Article  CAS  PubMed  Google Scholar 

Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I (2018) Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 96:1021–1042. https://doi.org/10.1002/jnr.24224

Article  CAS  PubMed  Google Scholar 

Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20:73–83

Article  CAS  PubMed  Google Scholar 

Bø L, Vedeler CA, Nyland HI, Trapp BD, Mork SV (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732. https://doi.org/10.1093/jnen/62.7.723

Article  PubMed  Google Scholar 

Burnouf T, Walker TL (2022) Platelets and brain function. Blood 140:8. https://doi.org/10.1182/blood.2022015970

Article  CAS  Google Scholar 

Canobbio I (2019) Blood platelets: Circulating mirrors of neurons? Res Pract Thromb Haemost 3:564–565. https://doi.org/10.1002/rth2.12254

Article  PubMed  PubMed Central  Google Scholar 

Cipriano GL, Schepici G, Mazzon E, Anchesi I (2024) Multiple Sclerosis: roles of mirna, lcnrna, and circrna and their implications in cellular pathways. Int J Mol Sci 25:2255. https://doi.org/10.3390/ijms25042255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X et al (2021) Expert panel of the 27th annual meeting of the European Charcot foundation. Role of B cells in multiple sclerosis and related disorders. Ann Neurol 89:13–23. https://doi.org/10.1002/ana.2592

Article  PubMed  Google Scholar 

Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davalos D, Mahajan KR, Trapp BD (2019) Brain fibrinogen deposition plays a key role in MS pathophysiology - Yes. Mult Scler 25:1434–1435. https://doi.org/10.1177/1352458519852723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R et al (2023) An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis 184:106230. https://doi.org/10.1016/j.nbd.2023.106230

Article  CAS  PubMed  Google Scholar 

Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nature Immunol 10(12):1252–9. https://doi.org/10.1038/ni.1798

Article  CAS  Google Scholar 

Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33:579–589. https://doi.org/10.1016/j.it.2012.07.004

Article  CAS  PubMed  Google Scholar 

Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H (2024) The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 147(11):3665–80. https://doi.org/10.1093/brain/awae251

Article  PubMed  PubMed Central  Google Scholar 

Forbes JD, Van Domselaar G, Bernstein CN (2016) The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol 7:1081. https://doi.org/10.3389/fmicb.2016.01081

Article  PubMed  PubMed Central  Google Scholar 

Glatigny S, Bettelli E (2018) Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS). Cold Spring Harb Perspect Med 8:a028977. https://doi.org/10.1101/cshperspect.a028977

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

Article  PubMed  Google Scholar 

Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O (2021) Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?. Brain communications 3(4):fcab237. https://doi.org/10.1093/braincomms/fcab237

Gros A, Ollivier V, Ho-Tin-Noe B (2015) Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 5:678. https://doi.org/10.3389/fimmun.2014.00678

Article  PubMed  PubMed Central  Google Scholar 

Gul S, Smith AD, Thompson RHS, Wright HP, Zilkha KJ (1970) Fatty acid composition of phospholipids from platelets and erythrocytes in multiple sclerosis. J Neurol Neurosurg Psychiat 33:506–510

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall SM (1972) The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J Cell Sci 10:535–542

Article  CAS  PubMed  Google Scholar 

Hamilton AM, Forkert ND, Yang R, Wu Y, Rogers JA, Yong VW, Dunn JF (2019) Central nervous system targeted autoimmunity causes regional atrophy: a 9.4 T MRI study of the EAE mouse model of Multiple Sclerosis. Scientific Rep 9(1):8488. https://doi.org/10.1038/s41598-019-44682-6

Article  CAS  Google Scholar 

Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1083. https://doi.org/10.1038/nature06559

Article  CAS  PubMed  Google Scholar 

Heng AHS, Han CW, Abbott C, McColl SR, Comerford I (2022) Chemokine-Driven Migration of Pro-Inflammatory CD4+ T Cells in CNS Autoimmune Disease. Front Immunol 13:817473. https://doi.org/10.3389/fimmu.2022.817473

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann N, Lachnit N, Streppel M, Witter B, Neiss WF, Gutinas-Lichius O, Angelov DN (2002) Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1α by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol 3:11. https://doi.org/10.1186/1471-2172-3-11

Article 

Comments (0)

No login
gif