Aharoni R, Eilam R, Arnon R (2021) Astrocytes in multiple sclerosis—Essential constituents with diverse multifaceted functions. Int J Mol Sci 22:5904. https://doi.org/10.3390/ijms22115904
Article CAS PubMed PubMed Central Google Scholar
Ahmad I, Omura S, Sato F, Park AM, Khadka S, Gavins FNE et al (2024) Exploring the role of platelets in virus-induced inflammatory demyelinating disease and myocarditis. Int J Mol Sci 25:3460. https://doi.org/10.3390/ijms25063460
Article CAS PubMed PubMed Central Google Scholar
Alfredsson L, Olsson T (2019) Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med 9:a028944. https://doi.org/10.1101/cshperspect.a028944
Article CAS PubMed PubMed Central Google Scholar
Berghoff SA, Düking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N et al (2017) (2017) Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun 5:94. https://doi.org/10.1186/s40478-017-0497-6
Article CAS PubMed PubMed Central Google Scholar
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH (2023) Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 43:1835–1877. https://doi.org/10.1002/med.21965
Article CAS PubMed Google Scholar
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I (2018) Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 96:1021–1042. https://doi.org/10.1002/jnr.24224
Article CAS PubMed Google Scholar
Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20:73–83
Article CAS PubMed Google Scholar
Bø L, Vedeler CA, Nyland HI, Trapp BD, Mork SV (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732. https://doi.org/10.1093/jnen/62.7.723
Burnouf T, Walker TL (2022) Platelets and brain function. Blood 140:8. https://doi.org/10.1182/blood.2022015970
Canobbio I (2019) Blood platelets: Circulating mirrors of neurons? Res Pract Thromb Haemost 3:564–565. https://doi.org/10.1002/rth2.12254
Article PubMed PubMed Central Google Scholar
Cipriano GL, Schepici G, Mazzon E, Anchesi I (2024) Multiple Sclerosis: roles of mirna, lcnrna, and circrna and their implications in cellular pathways. Int J Mol Sci 25:2255. https://doi.org/10.3390/ijms25042255
Article CAS PubMed PubMed Central Google Scholar
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X et al (2021) Expert panel of the 27th annual meeting of the European Charcot foundation. Role of B cells in multiple sclerosis and related disorders. Ann Neurol 89:13–23. https://doi.org/10.1002/ana.2592
Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
Article CAS PubMed PubMed Central Google Scholar
Davalos D, Mahajan KR, Trapp BD (2019) Brain fibrinogen deposition plays a key role in MS pathophysiology - Yes. Mult Scler 25:1434–1435. https://doi.org/10.1177/1352458519852723
Article CAS PubMed PubMed Central Google Scholar
Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R et al (2023) An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis 184:106230. https://doi.org/10.1016/j.nbd.2023.106230
Article CAS PubMed Google Scholar
Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nature Immunol 10(12):1252–9. https://doi.org/10.1038/ni.1798
Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33:579–589. https://doi.org/10.1016/j.it.2012.07.004
Article CAS PubMed Google Scholar
Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H (2024) The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 147(11):3665–80. https://doi.org/10.1093/brain/awae251
Article PubMed PubMed Central Google Scholar
Forbes JD, Van Domselaar G, Bernstein CN (2016) The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol 7:1081. https://doi.org/10.3389/fmicb.2016.01081
Article PubMed PubMed Central Google Scholar
Glatigny S, Bettelli E (2018) Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS). Cold Spring Harb Perspect Med 8:a028977. https://doi.org/10.1101/cshperspect.a028977
Article CAS PubMed PubMed Central Google Scholar
Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971
Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O (2021) Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?. Brain communications 3(4):fcab237. https://doi.org/10.1093/braincomms/fcab237
Gros A, Ollivier V, Ho-Tin-Noe B (2015) Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 5:678. https://doi.org/10.3389/fimmun.2014.00678
Article PubMed PubMed Central Google Scholar
Gul S, Smith AD, Thompson RHS, Wright HP, Zilkha KJ (1970) Fatty acid composition of phospholipids from platelets and erythrocytes in multiple sclerosis. J Neurol Neurosurg Psychiat 33:506–510
Article CAS PubMed PubMed Central Google Scholar
Hall SM (1972) The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J Cell Sci 10:535–542
Article CAS PubMed Google Scholar
Hamilton AM, Forkert ND, Yang R, Wu Y, Rogers JA, Yong VW, Dunn JF (2019) Central nervous system targeted autoimmunity causes regional atrophy: a 9.4 T MRI study of the EAE mouse model of Multiple Sclerosis. Scientific Rep 9(1):8488. https://doi.org/10.1038/s41598-019-44682-6
Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1083. https://doi.org/10.1038/nature06559
Article CAS PubMed Google Scholar
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I (2022) Chemokine-Driven Migration of Pro-Inflammatory CD4+ T Cells in CNS Autoimmune Disease. Front Immunol 13:817473. https://doi.org/10.3389/fimmu.2022.817473
Article CAS PubMed PubMed Central Google Scholar
Hoffmann N, Lachnit N, Streppel M, Witter B, Neiss WF, Gutinas-Lichius O, Angelov DN (2002) Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1α by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol 3:11. https://doi.org/10.1186/1471-2172-3-11
Comments (0)