Shaban SM, Moon BS, Pyun DG, Kim DH. A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles. Colloids Surf B Biointerfaces. 2021;205:111835.
Article CAS PubMed Google Scholar
Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem. 2014;29(3):269–78.
Article CAS PubMed Google Scholar
Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, Luo HQ. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity: via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B. 2018;6(18):2843–50.
Article CAS PubMed Google Scholar
Luo L, Liu J, Liu Y, Chen H, Zhang Y, Liu M, Yao S. In situ formation of fluorescence species for the detection of alkaline phosphatase and organophosphorus pesticide via the ascorbate oxidase mimetic activity of AgPd bimetallic nanoflowers. Food Chem. 2024;430:137062.
Article CAS PubMed Google Scholar
Yang Q, Wang X, Peng H, Arabi M, Li J, Xiong H, Choo J, Chen L. Ratiometric fluorescence and colorimetry dual-mode assay based on manganese dioxide nanosheets for visual detection of alkaline phosphatase activity. Sens Actuators B Chem. 2020;302:127176.
Fan S, Jiang X, Yang M, Wang X. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem. 2021;413(15):3955–63.
Article CAS PubMed Google Scholar
Hafez E, Moon BS, Shaban SM, Pyun DG, Kim DH. Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids. Microchim Acta. 2021;188(12):1–10.
Tang Z, Chen H, He H, Ma C. Assays for alkaline phosphatase activity: progress and prospects. TrAC Trends Anal Chem. 2019;113:32–43.
Zhou X, Wang M, Wang M, Su X. Nanozyme-based detection of alkaline phosphatase. ACS Appl Nano Mater. 2021;4(8):7888–96.
Wang AL, Teng JX, Yang CG, Xu ZR. Rapid and facile electrospray preparation of CsPbBr3@PMMA fluorescent microspheres for fluorescent detection of ALP in biological samples. Colloids Surf A Physicochem Eng Asp. 2022;634:127909.
Xi CY, Zhang M, Jiang L, Chen HY, Lv J, He Y, Hafez ME, Qian RC, Li DW. MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sens Actuators B Chem. 2022;369:132264.
Zhang S, Li R, Liu X, Yang L, Lu Q, Liu M, Li H, Zhang Y, Yao S. A novel multiple signal amplifying immunosensor based on the strategy of in situ-produced electroactive substance by ALP and carbon-based Ag-Au bimetallic as the catalyst and signal enhancer. Biosens Bioelectron. 2017;92:457–64.
Article CAS PubMed Google Scholar
Guo J, Liu Y, Zhang L, Pan J, Wang Y, Wang Y, Cai H, Ju H, Lu G. An ascorbic acid-responsive chemo-chromic SERS sensing chip for synergistic dual-modal on-site analysis of alkaline phosphatase. Sens Actuators B Chem. 2022;371:132527.
Liu X, Fan N, Wu L, Wu C, Zhou Y, Li P, Tang B, Li R. Lighting up alkaline phosphatase in drug-induced liver injury using a new chemiluminescence resonance energy transfer nanoprobe. Chem Commun. 2018;54:2023.
Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, Yao S. Phospholipid-tailored titanium carbide nanosheets as a novel fluorescent nanoprobe for activity assay and imaging of phospholipase D. Anal Chem. 2018;90(11):6742–8.
Article CAS PubMed Google Scholar
Fang A, Chen H, Li H, Liu M, Zhang Y, Yao S. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Biosens Bioelectron. 2017;87:545–51.
Article CAS PubMed Google Scholar
Wei YY, Zhang YZ, Song D, Li J, Xu ZR. Alkaline phosphatase-regulated in situ formation of chromogenic probes for multicolor visual sensing of biomarkers. Talanta. 2021;228:122222.
Article CAS PubMed Google Scholar
Li Q, Wang Y, Zhu Q, Liu H, Liu J, Meng HM, Li Z. A dual-mode system based on molybdophosphoric heteropoly acid and fluorescent microspheres for the reliable and ultrasensitive detection of alkaline phosphatase. Analyst. 2023;148(6):1259–64.
Article CAS PubMed Google Scholar
Hu Q, Zhou B, Dang P, Li L, Kong J, Zhang X. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. Anal Chim Acta. 2017;950:170–7.
Article CAS PubMed Google Scholar
Wu T, Hou W, Ma Z, Liu M, Liu X, Zhang Y, Yao S. Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Microchimica Acta. 2019. https://doi.org/10.1007/s00604-018-3224-5.
Wang J, Ni P, Chen C, Jiang Y, Zhang C, Wang B, Cao B, Lu Y. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Microchimica Acta. 2020. https://doi.org/10.1007/s00604-019-4070-9.
Ding Z, Li Z, Zhao X, Miao Y, Yuan Z, Jiang Y, Lu Y. Self-deposited ultrasmall Ru nanoparticles on carbon nitride with high peroxidase-mimicking activity for the colorimetric detection of alkaline phosphatase. J Colloid Interf Sci. 2023;631:86–95.
Xie X, Wang Y, Zhou X, Chen J, Wang M, Su X. Fe-N-C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst. 2021;146(3):896–903.
Article CAS PubMed Google Scholar
Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem. 2019;586:113415.
Article CAS PubMed Google Scholar
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent advances and applications in paper-based devices for point-of-care testing. J Anal Test. 2022;6:247–73.
Article PubMed PubMed Central Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.
Article CAS PubMed PubMed Central Google Scholar
Resmi PE, Stanley J, Kumar S, Soman KP, Ramachandran T, Satheesh Babu TG 2018 Fabrication of paper microfluidics POCT device for the colorimetric assay of alkaline phosphatase. In: INDICON 2018 - 15th IEEE India Council International Conference, 2018. p.1–4
Chen X, Chen J, Zhang HY, Wang FB, Wang FF, Ji XH, He ZK. Colorimetric detection of alkaline phosphatase on microfluidic paper-based analysis devices. Chin J Anal Chem. 2016;44(4):591–6.
Tai W, Yin F, Bi Y, Lin JM, Zhang Q, Wei Y, Hu Q, Yu L. Paper-based sensors for visual detection of alkaline phosphatase and alpha-fetoprotein via the distance readout. Sens Actuators B Chem. 2023;384:133666.
Zhu Y, Tong X, Wei Q, Cai G, Cao Y, Tong C, Shi S, Wang F. 3D origami paper-based ratiometric fluorescent microfluidic device for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase. Biosens Bioelectron. 2022;196:113691.
Article CAS PubMed Google Scholar
Lakshmi Devi A, Resmi PE, Pradeep A, Suneesh PV, Nair BG, Satheesh Babu TG. A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample. Spectrochim Acta A Mol Biomol Spectrosc. 2023;287(P1):122045.
Article CAS PubMed Google Scholar
Resmi PE, Sachin Kumar S, Alageswari D, Suneesh PV, Ramachandran T, Nair BG, Satheesh Babu TG. Development of a paper-based analytical device for the colourimetric detection of alanine transaminase and the application of deep learning for image analysis. Anal Chim Acta. 2021;1188:339158.
Article CAS PubMed Google Scholar
Edachana RP, Kumaresan A, Balasubramanian V, Thiagarajan R, Nair BG, Thekkedath Gopalakrishnan SB. Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles. Microchimica Acta. 2020.
Comments (0)