de la Torre JA, Vilagut G, Ronaldson A, Serrano-Blanco A, Martín V, Peters M, et al. Prevalence and variability of current depressive disorder in 27 European countries: a population-based study. Lancet Public Health. 2021;6(10):e729–38.
Greenberg PE, Fournier AA, Sisitsky T, Simes M, Berman R, Koenigsberg SH, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). PharmacoEconomics. 2021;39(6):653–65.
Article PubMed PubMed Central Google Scholar
IsHak WW, Mirocha J, James D, Tobia G, Vilhauer J, Fakhry H, et al. Quality of life in major depressive disorder before/after multiple steps of treatment and one-year follow-up. Acta Psychiatr Scand. 2015;131(1):51–60.
Article CAS PubMed Google Scholar
Iancu SC, Wong YM, Rhebergen D, van Balkom AJLM, Batelaan NM. Long-term disability in major depressive disorder: a 6-year follow-up study. Psychol Med. 2020;50(10):1644–52.
Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, et al. Major depressive disorder. Nat Rev Dis Primer. 2023;9(1):1–21.
American Psychiatric Association. DSM–5 Task Force. Diagnostic and statistical manual of mental disorders (DSM–5®). American Psychiatric Association; 2013. p. 947.
Marwaha S, Palmer E, Suppes T, Cons E, Young AH, Upthegrove R. Novel and emerging treatments for major depression. Lancet. 2023;401(10371):141–53.
Article CAS PubMed Google Scholar
Hansson O, Blennow K, Zetterberg H, Dage J. Blood biomarkers for Alzheimer’s disease in clinical practice and trials. Nat Aging. 2023;3(5):506–19.
Article PubMed PubMed Central Google Scholar
Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.
Jacobson NC, Weingarden H, Wilhelm S. Digital biomarkers of mood disorders and symptom change. Npj Digit Med. 2019;2(1):1–3.
Schultebraucks K, Yadav V, Galatzer-Levy IR. Utilization of Machine Learning-Based Computer Vision and Voice Analysis To Derive Digital Biomarkers of Cognitive Functioning in Trauma survivors. Digit Biomark. 2020;16–23.
Malgaroli M, Schultebraucks K. Artificial intelligence and posttraumatic stress disorder (PTSD): an overview of advances in research and emerging clinical applications. Eur Psychol. 2020;25(4):272–82.
Kappen M, Vanderhasselt MA, Slavich GM. Speech as a promising biosignal in precision psychiatry. Neurosci Biobehav Rev. 2023;148:105121.
Article PubMed PubMed Central Google Scholar
de Boer JN, Voppel AE, Brederoo SG, Schnack HG, Truong KP, Wijnen FNK, et al. Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool. Psychol Med. 2023;53(4):1302–12.
Koops S, Brederoo SG, de Boer JN, Nadema FG, Voppel AE, Sommer IE. Speech as a Biomarker for Depression. CNS Neurol Disord Drug Targets. 2023;22(2):152–60.
Article CAS PubMed Google Scholar
Marmar CR, Brown AD, Qian M, Laska E, Siegel C, Li M, et al. Speech-based markers for posttraumatic stress disorder in US veterans. Depress Anxiety. 2019;36(7):607–16.
Article PubMed PubMed Central Google Scholar
Eyben F, Scherer KR, Schuller BW, Sundberg J, Andre E, Busso C, et al. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Trans Affect Comput. 2016;7(2):190–202.
König A, Tröger J, Mallick E, Mina M, Linz N, Wagnon C, et al. Detecting subtle signs of depression with automated speech analysis in a non-clinical sample. BMC Psychiatry. 2022;22(1):830.
Article PubMed PubMed Central Google Scholar
König A, Mina M, Schäfer S, Linz N, Tröger J. Predicting Depression Severity from spontaneous Speech as prompted by a virtual Agent. Eur Psychiatry. 2023;66(S1):S157–8.
Article PubMed Central Google Scholar
Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, Quatieri TF. A review of depression and suicide risk assessment using speech analysis. Speech Commun. 2015;71:10–49.
Gupta R, Malandrakis N, Xiao B, Guha T, Van Segbroeck M, Black M et al. Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions. In: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge. Orlando Florida USA: ACM; 2014 [cited 2024 Jun 5];33–40. https://doi.org/10.1145/2661806.2661810
Ettore E, Müller P, Hinze J, Riemenschneider M, Benoit M, Giordana B, et al. Digital phenotyping for Differential diagnosis of major depressive episode: Narrative Review. JMIR Ment Health. 2023;10(1):e37225.
Article PubMed PubMed Central Google Scholar
Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders using speech: a systematic review. Laryngoscope Investig Otolaryngol. 2020;5(1):96–116.
Article PubMed PubMed Central Google Scholar
Horwitz R, Quatieri TF, Helfer BS, Yu B, Williamson JR, Mundt J. On the relative importance of vocal source, system, and prosody in human depression. 2013 IEEE Int Conf Body Sens Netw. 2013;1–6.
Kiss G, Vicsi K. Mono- and multi-lingual depression prediction based on speech processing. Int J Speech Technol. 2017;20(4):919–35.
Mundt JC, Vogel AP, Feltner DE, Lenderking WR. Vocal acoustic biomarkers of depression severity and treatment response. Biol Psychiatry. 2012;72(7):580–7.
Article PubMed PubMed Central Google Scholar
Yamamoto M, Takamiya A, Sawada K, Yoshimura M, Kitazawa M, Liang K, ching et al. Using speech recognition technology to investigate the association between timing-related speech features and depression severity. Hashimoto K, editor. PLOS ONE. 2020;15(9):e0238726.
Alghowinem S, Goecke R, Wagner M, Epps J, Breakspear M, Parker G. Detecting depression: A comparison between spontaneous and read speech. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. ieeexplore.ieee.org; 2013;7547–51.
Cummins N, Sethu V, Epps J, Schnieder S, Krajewski J. Analysis of acoustic space variability in speech affected by depression. Speech Commun. 2015;75:27–49.
Taguchi T, Tachikawa H, Nemoto K, Suzuki M, Nagano T, Tachibana R, et al. Major depressive disorder discrimination using vocal acoustic features. J Affect Disord. 2018;225:214–20.
Wang J, Zhang L, Liu T, Pan W, Hu B, Zhu T. Acoustic differences between healthy and depressed people: a cross-situation study. BMC Psychiatry. 2019;19(1):300.
Article PubMed PubMed Central Google Scholar
Trifu R, Nemes B, Bodea-Hațegan C, Cozman D. Linguistic indicators of language in major depressive disorder (MDD). An evidence based research. J Evid-Based Psychother. 2017;17:105–28.
Arevian AC, Bone D, Malandrakis N, Martinez VR, Wells KB, Miklowitz DJ et al. Clinical state tracking in serious mental illness through computational analysis of speech. Scilingo EP, editor. PLOS ONE. 2020;15(1):e0225695.
Shinohara S, Nakamura M, Omiya Y, Higuchi M, Hagiwara N, Mitsuyoshi S, et al. Depressive Mood Assessment Method based on emotion level derived from Voice: comparison of Voice Features of Individuals with Major Depressive Disorders and Healthy Controls. Int J Environ Res Public Health. 2021;18(10):5435.
Article PubMed PubMed Central Google Scholar
Stasak B, Epps J, Cummins N, Goecke R. An Investigation of Emotional Speech in Depression Classification. In: Interspeech 2016. ISCA; 2016 [cited 2024 Oct 16];485–9. https://www.isca-archive.org/interspeech_2016/stasak16_interspeech.html
Aharonson V, de Nooy A, Bulkin S, Sessel G. Automated Classification of Depression Severity Using Speech - A Comparison of Two Machine Learning Architectures. In: 2020 IEEE International Conference on Healthcare Informatics (ICHI). 2020 [cited 2024 Oct 16];1–4. https://ieeexplore.ieee.org/document/9374335
Shinohara S, Toda H, Nakamura M, Omiya Y, Higuchi M, Takano T, et al. Evaluation of the severity of Major Depression using a Voice Index for Emotional Arousal. Sensors. 2020;20(18):5041.
Article PubMed PubMed Central Google Scholar
Kwon N, Kim S. Depression Severity Detection Using Read Speech with a Divide-and-Conquer Approach. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021 [cited 2024 Oct 16];633–7. https://ieeexplore.ieee.org/document/9629868
Schräder J, Herzberg L, Jo HG, Hernandez-Pena L, Koch J, Habel U et al. Neurophysiological pathways of unconscious emotion Processing in Depression: insights from a simultaneous electroencephalography-functional magnetic resonance imaging measurement. Biol Psychiatry Cogn Neurosci Neuroimaging. 2024;S2451–9022(24)00193–9.
Beesdo-Baum K, Zaudig M, Wittchen HU. SCID–5-CV Strukturiertes Klinisches Interview für DSM–5-Störungen–Klinische Version: Deutsche Bearbeitung des Structured Clinical Interview for DSM–5 Disorders–Clinician Version von Michael B. First, Janet BW Williams, Rhonda S. Karg, Robert L. Hogrefe; 2019 [cited 2024 Apr 22]. https://www.testzentrale.de/shop/strukturiertes-klinisches-interview-fuer-dsm–5r-stoerungen-klinische-version.html
Beck AT, Steer RA, Brown G. Beck Depression Inventory–II (BDI-II). 1996 [cited 2024 May 13]. https://doi.org/10.1037/t00742-000
Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–61.
Article CAS PubMed PubMed Central Google Scholar
Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19(5):393–4.
Article CAS PubMed Google Scholar
Härting C. Wechsler-Gedächtnistest - Revidierte Fassung: WMS-R; manual ; deutsche Adaptation Der Revidierten Fassung Der Wechsler Memory scale. Huber; 2000;125.
Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the state-trait anxiety inventory (form Y1 – Y2). Palo Alto, CA: Consulting Psychologists Press; 1983;IV.
Comments (0)