The voice of depression: speech features as biomarkers for major depressive disorder

de la Torre JA, Vilagut G, Ronaldson A, Serrano-Blanco A, Martín V, Peters M, et al. Prevalence and variability of current depressive disorder in 27 European countries: a population-based study. Lancet Public Health. 2021;6(10):e729–38.

Article  Google Scholar 

Greenberg PE, Fournier AA, Sisitsky T, Simes M, Berman R, Koenigsberg SH, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). PharmacoEconomics. 2021;39(6):653–65.

Article  PubMed  PubMed Central  Google Scholar 

IsHak WW, Mirocha J, James D, Tobia G, Vilhauer J, Fakhry H, et al. Quality of life in major depressive disorder before/after multiple steps of treatment and one-year follow-up. Acta Psychiatr Scand. 2015;131(1):51–60.

Article  CAS  PubMed  Google Scholar 

Iancu SC, Wong YM, Rhebergen D, van Balkom AJLM, Batelaan NM. Long-term disability in major depressive disorder: a 6-year follow-up study. Psychol Med. 2020;50(10):1644–52.

Article  PubMed  Google Scholar 

Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, et al. Major depressive disorder. Nat Rev Dis Primer. 2023;9(1):1–21.

Google Scholar 

American Psychiatric Association. DSM–5 Task Force. Diagnostic and statistical manual of mental disorders (DSM–5®). American Psychiatric Association; 2013. p. 947.

Marwaha S, Palmer E, Suppes T, Cons E, Young AH, Upthegrove R. Novel and emerging treatments for major depression. Lancet. 2023;401(10371):141–53.

Article  CAS  PubMed  Google Scholar 

Hansson O, Blennow K, Zetterberg H, Dage J. Blood biomarkers for Alzheimer’s disease in clinical practice and trials. Nat Aging. 2023;3(5):506–19.

Article  PubMed  PubMed Central  Google Scholar 

Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

Article  PubMed  Google Scholar 

Jacobson NC, Weingarden H, Wilhelm S. Digital biomarkers of mood disorders and symptom change. Npj Digit Med. 2019;2(1):1–3.

Article  Google Scholar 

Schultebraucks K, Yadav V, Galatzer-Levy IR. Utilization of Machine Learning-Based Computer Vision and Voice Analysis To Derive Digital Biomarkers of Cognitive Functioning in Trauma survivors. Digit Biomark. 2020;16–23.

Malgaroli M, Schultebraucks K. Artificial intelligence and posttraumatic stress disorder (PTSD): an overview of advances in research and emerging clinical applications. Eur Psychol. 2020;25(4):272–82.

Article  Google Scholar 

Kappen M, Vanderhasselt MA, Slavich GM. Speech as a promising biosignal in precision psychiatry. Neurosci Biobehav Rev. 2023;148:105121.

Article  PubMed  PubMed Central  Google Scholar 

de Boer JN, Voppel AE, Brederoo SG, Schnack HG, Truong KP, Wijnen FNK, et al. Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool. Psychol Med. 2023;53(4):1302–12.

Article  PubMed  Google Scholar 

Koops S, Brederoo SG, de Boer JN, Nadema FG, Voppel AE, Sommer IE. Speech as a Biomarker for Depression. CNS Neurol Disord Drug Targets. 2023;22(2):152–60.

Article  CAS  PubMed  Google Scholar 

Marmar CR, Brown AD, Qian M, Laska E, Siegel C, Li M, et al. Speech-based markers for posttraumatic stress disorder in US veterans. Depress Anxiety. 2019;36(7):607–16.

Article  PubMed  PubMed Central  Google Scholar 

Eyben F, Scherer KR, Schuller BW, Sundberg J, Andre E, Busso C, et al. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Trans Affect Comput. 2016;7(2):190–202.

Article  Google Scholar 

König A, Tröger J, Mallick E, Mina M, Linz N, Wagnon C, et al. Detecting subtle signs of depression with automated speech analysis in a non-clinical sample. BMC Psychiatry. 2022;22(1):830.

Article  PubMed  PubMed Central  Google Scholar 

König A, Mina M, Schäfer S, Linz N, Tröger J. Predicting Depression Severity from spontaneous Speech as prompted by a virtual Agent. Eur Psychiatry. 2023;66(S1):S157–8.

Article  PubMed Central  Google Scholar 

Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, Quatieri TF. A review of depression and suicide risk assessment using speech analysis. Speech Commun. 2015;71:10–49.

Article  Google Scholar 

Gupta R, Malandrakis N, Xiao B, Guha T, Van Segbroeck M, Black M et al. Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions. In: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge. Orlando Florida USA: ACM; 2014 [cited 2024 Jun 5];33–40. https://doi.org/10.1145/2661806.2661810

Ettore E, Müller P, Hinze J, Riemenschneider M, Benoit M, Giordana B, et al. Digital phenotyping for Differential diagnosis of major depressive episode: Narrative Review. JMIR Ment Health. 2023;10(1):e37225.

Article  PubMed  PubMed Central  Google Scholar 

Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders using speech: a systematic review. Laryngoscope Investig Otolaryngol. 2020;5(1):96–116.

Article  PubMed  PubMed Central  Google Scholar 

Horwitz R, Quatieri TF, Helfer BS, Yu B, Williamson JR, Mundt J. On the relative importance of vocal source, system, and prosody in human depression. 2013 IEEE Int Conf Body Sens Netw. 2013;1–6.

Kiss G, Vicsi K. Mono- and multi-lingual depression prediction based on speech processing. Int J Speech Technol. 2017;20(4):919–35.

Article  Google Scholar 

Mundt JC, Vogel AP, Feltner DE, Lenderking WR. Vocal acoustic biomarkers of depression severity and treatment response. Biol Psychiatry. 2012;72(7):580–7.

Article  PubMed  PubMed Central  Google Scholar 

Yamamoto M, Takamiya A, Sawada K, Yoshimura M, Kitazawa M, Liang K, ching et al. Using speech recognition technology to investigate the association between timing-related speech features and depression severity. Hashimoto K, editor. PLOS ONE. 2020;15(9):e0238726.

Alghowinem S, Goecke R, Wagner M, Epps J, Breakspear M, Parker G. Detecting depression: A comparison between spontaneous and read speech. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. ieeexplore.ieee.org; 2013;7547–51.

Cummins N, Sethu V, Epps J, Schnieder S, Krajewski J. Analysis of acoustic space variability in speech affected by depression. Speech Commun. 2015;75:27–49.

Article  Google Scholar 

Taguchi T, Tachikawa H, Nemoto K, Suzuki M, Nagano T, Tachibana R, et al. Major depressive disorder discrimination using vocal acoustic features. J Affect Disord. 2018;225:214–20.

Article  PubMed  Google Scholar 

Wang J, Zhang L, Liu T, Pan W, Hu B, Zhu T. Acoustic differences between healthy and depressed people: a cross-situation study. BMC Psychiatry. 2019;19(1):300.

Article  PubMed  PubMed Central  Google Scholar 

Trifu R, Nemes B, Bodea-Hațegan C, Cozman D. Linguistic indicators of language in major depressive disorder (MDD). An evidence based research. J Evid-Based Psychother. 2017;17:105–28.

Article  Google Scholar 

Arevian AC, Bone D, Malandrakis N, Martinez VR, Wells KB, Miklowitz DJ et al. Clinical state tracking in serious mental illness through computational analysis of speech. Scilingo EP, editor. PLOS ONE. 2020;15(1):e0225695.

Shinohara S, Nakamura M, Omiya Y, Higuchi M, Hagiwara N, Mitsuyoshi S, et al. Depressive Mood Assessment Method based on emotion level derived from Voice: comparison of Voice Features of Individuals with Major Depressive Disorders and Healthy Controls. Int J Environ Res Public Health. 2021;18(10):5435.

Article  PubMed  PubMed Central  Google Scholar 

Stasak B, Epps J, Cummins N, Goecke R. An Investigation of Emotional Speech in Depression Classification. In: Interspeech 2016. ISCA; 2016 [cited 2024 Oct 16];485–9. https://www.isca-archive.org/interspeech_2016/stasak16_interspeech.html

Aharonson V, de Nooy A, Bulkin S, Sessel G. Automated Classification of Depression Severity Using Speech - A Comparison of Two Machine Learning Architectures. In: 2020 IEEE International Conference on Healthcare Informatics (ICHI). 2020 [cited 2024 Oct 16];1–4. https://ieeexplore.ieee.org/document/9374335

Shinohara S, Toda H, Nakamura M, Omiya Y, Higuchi M, Takano T, et al. Evaluation of the severity of Major Depression using a Voice Index for Emotional Arousal. Sensors. 2020;20(18):5041.

Article  PubMed  PubMed Central  Google Scholar 

Kwon N, Kim S. Depression Severity Detection Using Read Speech with a Divide-and-Conquer Approach. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021 [cited 2024 Oct 16];633–7. https://ieeexplore.ieee.org/document/9629868

Schräder J, Herzberg L, Jo HG, Hernandez-Pena L, Koch J, Habel U et al. Neurophysiological pathways of unconscious emotion Processing in Depression: insights from a simultaneous electroencephalography-functional magnetic resonance imaging measurement. Biol Psychiatry Cogn Neurosci Neuroimaging. 2024;S2451–9022(24)00193–9.

Beesdo-Baum K, Zaudig M, Wittchen HU. SCID–5-CV Strukturiertes Klinisches Interview für DSM–5-Störungen–Klinische Version: Deutsche Bearbeitung des Structured Clinical Interview for DSM–5 Disorders–Clinician Version von Michael B. First, Janet BW Williams, Rhonda S. Karg, Robert L. Hogrefe; 2019 [cited 2024 Apr 22]. https://www.testzentrale.de/shop/strukturiertes-klinisches-interview-fuer-dsm–5r-stoerungen-klinische-version.html

Beck AT, Steer RA, Brown G. Beck Depression Inventory–II (BDI-II). 1996 [cited 2024 May 13]. https://doi.org/10.1037/t00742-000

Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19(5):393–4.

Article  CAS  PubMed  Google Scholar 

Härting C. Wechsler-Gedächtnistest - Revidierte Fassung: WMS-R; manual ; deutsche Adaptation Der Revidierten Fassung Der Wechsler Memory scale. Huber; 2000;125.

Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the state-trait anxiety inventory (form Y1 – Y2). Palo Alto, CA: Consulting Psychologists Press; 1983;IV.

Comments (0)

No login
gif