A Sequential Population Pharmacokinetic Model of Zilovertamab Vedotin in Patients with Hematologic Malignancies Extrapolated to the Pediatric Population

Dave H, Butcher D, Anver M, Bollard CM. ROR1 and ROR2-novel targets for neuroblastoma. Pediatr Hematol Oncol. 2019;36(6):352–64. https://doi.org/10.1080/08880018.2019.1646365.

Article  PubMed  CAS  Google Scholar 

Cui B, Ghia EM, Chen L, et al. High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood. 2016;128(25):2931–40. https://doi.org/10.1182/blood-2016-04-712562.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daneshmanesh AH, Porwit A, Hojjat-Farsangi M, et al. Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk Lymphoma. 2013;54(4):843–50. https://doi.org/10.3109/10428194.2012.731599.

Article  PubMed  CAS  Google Scholar 

Ghaderi A, Daneshmanesh AH, Moshfegh A, et al. ROR1 is expressed in diffuse large B-cell lymphoma (DLBCL) and a small molecule inhibitor of ROR1 (KAN0441571C) induced apoptosis of lymphoma cells. Biomedicines. 2020. https://doi.org/10.3390/biomedicines8060170.

Article  PubMed  PubMed Central  Google Scholar 

Huang X, Park H, Greene J, et al. IGF1R- and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS ONE. 2015;10(7): e0133152. https://doi.org/10.1371/journal.pone.0133152.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Molecules. 2020. https://doi.org/10.3390/molecules25204764.

Article  PubMed  PubMed Central  Google Scholar 

Liao MZ, Lu D, Kagedal M, et al. Model-informed therapeutic dose optimization strategies for antibody-drug conjugates in oncology: what can we learn from US Food and Drug Administration-approved antibody-drug conjugates? Clin Pharmacol Ther. 2021;110(5):1216–30. https://doi.org/10.1002/cpt.2278.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dave H, Anver MR, Butcher DO, et al. Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies. PLoS ONE. 2012;7(12): e52655. https://doi.org/10.1371/journal.pone.0052655.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Potratz J, Tillmanns A, Berning P, et al. Receptor tyrosine kinase gene expression profiles of Ewing sarcomas reveal ROR1 as a potential therapeutic target in metastatic disease. Mol Oncol. 2016;10(5):677–92. https://doi.org/10.1016/j.molonc.2015.12.009.

Article  PubMed  CAS  Google Scholar 

Betts A, Clark T, Jasper P, et al. Use of translational modeling and simulation for quantitative comparison of PF-06804103, a new generation HER2 ADC, with Trastuzumab-DM1. J Pharmacokinet Pharmacodyn. 2020;47(5):513–26. https://doi.org/10.1007/s10928-020-09702-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gibiansky L, Gibiansky E. Target-mediated drug disposition model and its approximations for antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2014;41(1):35–47. https://doi.org/10.1007/s10928-013-9344-y.

Article  PubMed  CAS  Google Scholar 

Kamath AV, Iyer S. Challenges and advances in the assessment of the disposition of antibody-drug conjugates. Biopharm Drug Dispos. 2016;37(2):66–74. https://doi.org/10.1002/bdd.1957.

Article  PubMed  CAS  Google Scholar 

Basu S, Lien YTK, Vozmediano V, et al. Physiologically based pharmacokinetic modeling of monoclonal antibodies in pediatric populations using PK-sim. Front Pharmacol. 2020;11:868. https://doi.org/10.3389/fphar.2020.00868.

Article  PubMed  PubMed Central  CAS  Google Scholar 

DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known. Archives Internal Medicine. 1916;17:863–71.

Article  CAS  Google Scholar 

DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5:303–11.

CAS  Google Scholar 

National Health and Nutrition Examination Survey. 2021. https://www.cdc.gov/nchs/nhanes/index.htm. Accessed 23 Feb 2022.

Liu SN, Li C. Clinical pharmacology strategies in supporting drug development and approval of antibody-drug conjugates in oncology. Cancer Chemother Pharmacol. 2021;87(6):743–65. https://doi.org/10.1007/s00280-021-04250-0.

Article  PubMed  PubMed Central  Google Scholar 

Li H, Han TH, Hunder NN, Jang G, Zhao B. Population pharmacokinetics of brentuximab vedotin in patients with CD30-expressing hematologic malignancies. J Clin Pharmacol. 2017;57(9):1148–58. https://doi.org/10.1002/jcph.920.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu D, Gibiansky L, Agarwal P, et al. Integrated two-analyte population pharmacokinetic model for antibody-drug conjugates in patients: implications for reducing pharmacokinetic sampling. CPT Pharmacometrics Syst Pharmacol. 2016;5(12):665–73. https://doi.org/10.1002/psp4.12137.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu D, Lu T, Gibiansky L, et al. Integrated two-analyte population pharmacokinetic model of polatuzumab vedotin in patients with non-Hodgkin lymphoma. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):48–59. https://doi.org/10.1002/psp4.12482.

Article  PubMed  CAS  Google Scholar 

Flerlage JE, Metzger ML, Wu J, Panetta JC. Pharmacokinetics, immunogenicity, and safety of weekly dosing of brentuximab vedotin in pediatric patients with Hodgkin lymphoma. Cancer Chemother Pharmacol. 2016;78(6):1217–23. https://doi.org/10.1007/s00280-016-3180-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–36. https://doi.org/10.1128/AAC.06446-11.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chudasama VL, Schaedeli Stark F, Harrold JM, et al. Semi-mechanistic population pharmacokinetic model of multivalent trastuzumab emtansine in patients with metastatic breast cancer. Clin Pharmacol Ther. 2012;92(4):520–7. https://doi.org/10.1038/clpt.2012.153.

Article  PubMed  CAS  Google Scholar 

Garrett M, Ruiz-Garcia A, Parivar K, Hee B, Boni J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn. 2019;46(3):211–22. https://doi.org/10.1007/s10928-018-9614-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kuruvilla D, Chia YL, Balic K, et al. Population pharmacokinetics, efficacy, and safety of moxetumomab pasudotox in patients with relapsed or refractory hairy cell leukaemia. Br J Clin Pharmacol. 2020;86(7):1367–76. https://doi.org/10.1111/bcp.14250.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu D, Girish S, Gao Y, et al. Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: clinical implications of the effect of covariates. Cancer Chemother Pharmacol. 2014;74(2):399–410. https://doi.org/10.1007/s00280-014-2500-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rathi C, Collins J, Struemper H, Opalinska J, Jewell RC, Ferron-Brady G. Population pharmacokinetics of belantamab mafodotin, a BCMA-targeting agent in patients with relapsed/refractory multiple myeloma. CPT Pharmacometrics Syst Pharmacol. 2021;10(8):851–63. https://doi.org/10.1002/psp4.12660.

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif