Dave H, Butcher D, Anver M, Bollard CM. ROR1 and ROR2-novel targets for neuroblastoma. Pediatr Hematol Oncol. 2019;36(6):352–64. https://doi.org/10.1080/08880018.2019.1646365.
Article PubMed CAS Google Scholar
Cui B, Ghia EM, Chen L, et al. High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood. 2016;128(25):2931–40. https://doi.org/10.1182/blood-2016-04-712562.
Article PubMed PubMed Central CAS Google Scholar
Daneshmanesh AH, Porwit A, Hojjat-Farsangi M, et al. Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk Lymphoma. 2013;54(4):843–50. https://doi.org/10.3109/10428194.2012.731599.
Article PubMed CAS Google Scholar
Ghaderi A, Daneshmanesh AH, Moshfegh A, et al. ROR1 is expressed in diffuse large B-cell lymphoma (DLBCL) and a small molecule inhibitor of ROR1 (KAN0441571C) induced apoptosis of lymphoma cells. Biomedicines. 2020. https://doi.org/10.3390/biomedicines8060170.
Article PubMed PubMed Central Google Scholar
Huang X, Park H, Greene J, et al. IGF1R- and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS ONE. 2015;10(7): e0133152. https://doi.org/10.1371/journal.pone.0133152.
Article PubMed PubMed Central CAS Google Scholar
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Molecules. 2020. https://doi.org/10.3390/molecules25204764.
Article PubMed PubMed Central Google Scholar
Liao MZ, Lu D, Kagedal M, et al. Model-informed therapeutic dose optimization strategies for antibody-drug conjugates in oncology: what can we learn from US Food and Drug Administration-approved antibody-drug conjugates? Clin Pharmacol Ther. 2021;110(5):1216–30. https://doi.org/10.1002/cpt.2278.
Article PubMed PubMed Central CAS Google Scholar
Dave H, Anver MR, Butcher DO, et al. Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies. PLoS ONE. 2012;7(12): e52655. https://doi.org/10.1371/journal.pone.0052655.
Article PubMed PubMed Central CAS Google Scholar
Potratz J, Tillmanns A, Berning P, et al. Receptor tyrosine kinase gene expression profiles of Ewing sarcomas reveal ROR1 as a potential therapeutic target in metastatic disease. Mol Oncol. 2016;10(5):677–92. https://doi.org/10.1016/j.molonc.2015.12.009.
Article PubMed CAS Google Scholar
Betts A, Clark T, Jasper P, et al. Use of translational modeling and simulation for quantitative comparison of PF-06804103, a new generation HER2 ADC, with Trastuzumab-DM1. J Pharmacokinet Pharmacodyn. 2020;47(5):513–26. https://doi.org/10.1007/s10928-020-09702-3.
Article PubMed PubMed Central CAS Google Scholar
Gibiansky L, Gibiansky E. Target-mediated drug disposition model and its approximations for antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2014;41(1):35–47. https://doi.org/10.1007/s10928-013-9344-y.
Article PubMed CAS Google Scholar
Kamath AV, Iyer S. Challenges and advances in the assessment of the disposition of antibody-drug conjugates. Biopharm Drug Dispos. 2016;37(2):66–74. https://doi.org/10.1002/bdd.1957.
Article PubMed CAS Google Scholar
Basu S, Lien YTK, Vozmediano V, et al. Physiologically based pharmacokinetic modeling of monoclonal antibodies in pediatric populations using PK-sim. Front Pharmacol. 2020;11:868. https://doi.org/10.3389/fphar.2020.00868.
Article PubMed PubMed Central CAS Google Scholar
DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known. Archives Internal Medicine. 1916;17:863–71.
DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5:303–11.
National Health and Nutrition Examination Survey. 2021. https://www.cdc.gov/nchs/nhanes/index.htm. Accessed 23 Feb 2022.
Liu SN, Li C. Clinical pharmacology strategies in supporting drug development and approval of antibody-drug conjugates in oncology. Cancer Chemother Pharmacol. 2021;87(6):743–65. https://doi.org/10.1007/s00280-021-04250-0.
Article PubMed PubMed Central Google Scholar
Li H, Han TH, Hunder NN, Jang G, Zhao B. Population pharmacokinetics of brentuximab vedotin in patients with CD30-expressing hematologic malignancies. J Clin Pharmacol. 2017;57(9):1148–58. https://doi.org/10.1002/jcph.920.
Article PubMed PubMed Central CAS Google Scholar
Lu D, Gibiansky L, Agarwal P, et al. Integrated two-analyte population pharmacokinetic model for antibody-drug conjugates in patients: implications for reducing pharmacokinetic sampling. CPT Pharmacometrics Syst Pharmacol. 2016;5(12):665–73. https://doi.org/10.1002/psp4.12137.
Article PubMed PubMed Central CAS Google Scholar
Lu D, Lu T, Gibiansky L, et al. Integrated two-analyte population pharmacokinetic model of polatuzumab vedotin in patients with non-Hodgkin lymphoma. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):48–59. https://doi.org/10.1002/psp4.12482.
Article PubMed CAS Google Scholar
Flerlage JE, Metzger ML, Wu J, Panetta JC. Pharmacokinetics, immunogenicity, and safety of weekly dosing of brentuximab vedotin in pediatric patients with Hodgkin lymphoma. Cancer Chemother Pharmacol. 2016;78(6):1217–23. https://doi.org/10.1007/s00280-016-3180-x.
Article PubMed PubMed Central CAS Google Scholar
Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–36. https://doi.org/10.1128/AAC.06446-11.
Article PubMed PubMed Central CAS Google Scholar
Chudasama VL, Schaedeli Stark F, Harrold JM, et al. Semi-mechanistic population pharmacokinetic model of multivalent trastuzumab emtansine in patients with metastatic breast cancer. Clin Pharmacol Ther. 2012;92(4):520–7. https://doi.org/10.1038/clpt.2012.153.
Article PubMed CAS Google Scholar
Garrett M, Ruiz-Garcia A, Parivar K, Hee B, Boni J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn. 2019;46(3):211–22. https://doi.org/10.1007/s10928-018-9614-9.
Article PubMed PubMed Central CAS Google Scholar
Kuruvilla D, Chia YL, Balic K, et al. Population pharmacokinetics, efficacy, and safety of moxetumomab pasudotox in patients with relapsed or refractory hairy cell leukaemia. Br J Clin Pharmacol. 2020;86(7):1367–76. https://doi.org/10.1111/bcp.14250.
Article PubMed PubMed Central CAS Google Scholar
Lu D, Girish S, Gao Y, et al. Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: clinical implications of the effect of covariates. Cancer Chemother Pharmacol. 2014;74(2):399–410. https://doi.org/10.1007/s00280-014-2500-2.
Article PubMed PubMed Central CAS Google Scholar
Rathi C, Collins J, Struemper H, Opalinska J, Jewell RC, Ferron-Brady G. Population pharmacokinetics of belantamab mafodotin, a BCMA-targeting agent in patients with relapsed/refractory multiple myeloma. CPT Pharmacometrics Syst Pharmacol. 2021;10(8):851–63. https://doi.org/10.1002/psp4.12660.
Comments (0)