LPA suppresses HLA-DR expression in human melanoma cells: a potential immune escape mechanism involving LPAR1 and DR6-mediated release of IL-10

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

Article  PubMed  Google Scholar 

Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol. 2010;161:241–70.

Article  CAS  Google Scholar 

Benesch MGK, Ko YM, McMullen TPW, Brindley DN. Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett. 2014;588:2712–27.

Article  CAS  PubMed  Google Scholar 

Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem. 1992;267:2524–9.

Article  CAS  PubMed  Google Scholar 

Gotoh M, Fujiwara Y, Yue J, Liu J, Lee SC, Fells J, et al. Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012;40:31–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Li H, Xu W, Guo X. Evaluation of serum ATX and LPA as potential diagnostic biomarkers in patients with pancreatic cancer. BMC Gastroenterol. 2021;21:1–10.

Article  CAS  Google Scholar 

Lee SC, Dacheux MA, Norman DD, Balázs L, Torres RM, Augelli-Szafran CE, et al. Regulation of tumor immunity by lysophosphatidic acid. Cancers. 2020;12:1202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee D, Suh DS, Lee SC, Tigyi GJ, Kim JH. Role of autotaxin in cancer stem cells. Cancer Metastasis Rev. 2018;37:509.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren X, Lin Z, Yuan W. A structural and functional perspective of death receptor 6. Front Pharmacol. 2022;13:776.

Google Scholar 

Stegmann S, Werner JM, Kuhl S, Röhn G, Krischek B, Stavrinou P, et al. Death receptor 6 (DR6) is overexpressed in astrocytomas. Anticancer Res. 2019;39:2299–306.

Article  CAS  PubMed  Google Scholar 

Kasof GM, Lu JJ, Liu D, Speer B, Mongan KN, Gomes BC, et al. Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene. 2001;20:7965–75.

Article  CAS  PubMed  Google Scholar 

McNeal S, Bitterman P, Bahr JM, Edassery SL, Abramowicz JS, Basu S, et al. Association of immunosuppression with DR6 expression during the development and progression of spontaneous ovarian cancer in Laying Hen model. J Immunol Res. 2016;2016. https://doi.org/10.1155/2016/6729379.

Zhou C, Chen Z, Liu J, Fang S. Aberrant upregulation of TNFRSF21 enhances tumor aggressiveness in lung cancer via activation of the ERK/FOXM1 signaling cascade. 2021. https://doi.org/10.21203/RS.3.RS-861066/V1.

Xu H, Yin L, Xu Q, Xiang J, Xu R. N6-methyladenosine methylation modification patterns reveal immune profiling in pancreatic adenocarcinoma. Cancer Cell Int. 2022;22:1–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, Shi B, Li L, Xu Z, Ge Y, Shi J, et al. Death receptor 6 (DR6) is required for mouse b16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways. Oncogenesis. 2016;5. https://doi.org/10.1038/oncsis.2016.9.

Dong Y, Wu Y, Cui MZ, Xu X. Lysophosphatidic acid triggers apoptosis in HeLa cells through the upregulation of tumor necrosis factor receptor superfamily member 21. Mediat Inflamm. 2017;2017. https://doi.org/10.1155/2017/2754756.

Wang X, Wang H, Mou X, Xu Y, Han W, Huang A, et al. Lysophosphatidic acid protects cervical cancer HeLa cells from apoptosis induced by doxorubicin hydrochloride. Oncol Lett. 2022;24:1–8.

Article  Google Scholar 

Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, et al. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 2023;14:1161067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dummer W, Becker JC, Schwaaf A, Leverkus M, Moll T, Bröcker EB. Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma. Melanoma Res. 1995;5:67–8.

Article  CAS  PubMed  Google Scholar 

Zhao H, Yang J, Yu Z, Shen H, Huang X, Zhang M, et al. Synthetic analysis of associations between IL-10 polymorphisms and skin cancer risk. Oncotarget. 2017;9:6728–36.

Article  PubMed  PubMed Central  Google Scholar 

Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14:e218–28.

Article  CAS  PubMed  Google Scholar 

Zhao S, Wu D, Wu P, Wang Z, Huang J, Gao JX. Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis. PLoS ONE. 2015;10. https://doi.org/10.1371/JOURNAL.PONE.0139598.

Itakura E, Huang RR, Wen DR, Paul E, Wünsch PH, Cochran AJ. IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol. 2011;24:801–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SK, Cho SW. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol. 2022;13. https://doi.org/10.3389/FPHAR.2022.868695.

Amrane K, Le Meur C, Besse B, Hemon P, Le Noac’h P, Pradier O, et al. HLA-DR expression in melanoma: from misleading therapeutic target to potential immunotherapy biomarker. Front Immunol. 2024;14:1285895.

Article  PubMed  PubMed Central  Google Scholar 

Swaney JS, Chapman C, Correa LD, Stebbins KJ, Broadhead AR, Bain G, et al. Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J Pharmacol Exp Ther. 2011;336:693–700.

Article  CAS  PubMed  Google Scholar 

Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, et al. Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol. 2003;64:994–1005.

Article  CAS  PubMed  Google Scholar 

Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin. 2023;44:1879–89.

Article  PubMed  PubMed Central  Google Scholar 

Sun W, Yang J. Molecular basis of lysophosphatidic acid-induced NF-κB activation. Cell Signal. 2010;22:1799–803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

Article  CAS  PubMed  Google Scholar 

Cao S, Zhang X, Edwards JP, Mosser DM. NF-κB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem. 2006;281:26041–50.

Article  CAS  PubMed  Google Scholar 

Olbryt M, Rajczykowski M, Widłak W. Biological factors behind melanoma response to immune checkpoint inhibitors. Int J Mol Sci. 2020;21:E4071–E4071.

Article  Google Scholar 

Sedláková I, Vávrová J, Tošner J, Hanousek L. Lysophosphatidic acid (LPA)—a perspective marker in ovarian cancer. Tumor Biol. 2011;32:311–6.

Article  Google Scholar 

Tigyi G, Dacheux MA, Lin KH, Yue J, Norman D, Benyó Z, et al. Anti-cancer strategies targeting the autotaxin-lysophosphatidic acid receptor axis: is there a path forward? Cancer Metastasis Rev. 2021;40:3–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matas-Rico E, Frijlink E, van der Haar Àvila I, Menegakis A, van Zon M, Morris AJ, et al. Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8+ T cells. Cell Rep. 2021;37. https://doi.org/10.1016/J.CELREP.2021.110013.

Chen R, Niu L, Wu L, He Y, Liu G, Hong K. Identification of an endoplasmic reticulum stress-associated gene signature to predict the immune status and prognosis of cutaneous melanoma. Medicine. 2022;101:e30280.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif