A novel complement-fixing IgM antibody targeting GPC1 as a useful immunotherapeutic strategy for the treatment of pancreatic ductal adenocarcinoma

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

Article  PubMed  Google Scholar 

Aslan M, Shahbazi R, Ulubayram K, Ozpolat B. Targeted therapies for pancreatic cancer and hurdles ahead. Anticancer Res. 2018;38:6591–606.

Article  CAS  PubMed  Google Scholar 

Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy. Front Oncol. 2021;11:688377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arias-Pinilla GA, Modjtahedi H. Therapeutic application of monoclonal antibodies in pancreatic cancer: advances, challenges and future opportunities. Cancers (Basel). 2021;13:1781.

Article  CAS  PubMed  Google Scholar 

Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer—clinical challenges and opportunities. Nat Rev Clin Oncol. 2020;17:527–40.

Article  PubMed  PubMed Central  Google Scholar 

Rogers LM, Veeramani S, Weiner GJ. Complement in monoclonal antibody therapy of cancer. Immunol Res. 2014;59:203–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macor P, Capolla S, Tedesco F. Complement as a biological tool to control tumor growth. Front Immunol. 2018;9:2203.

Article  PubMed  PubMed Central  Google Scholar 

Macor P, Tedesco F. Complement as effector system in cancer immunotherapy. Immunol Lett. 2007;111:6–13.

Article  CAS  PubMed  Google Scholar 

Samsudin F, Yeo JY, Gan SK-E, Bond PJ. Not all therapeutic antibody isotypes are equal: the case of IgM versus IgG in pertuzumab and trastuzumab. Chem Sci. 2020;11:2843–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kretschmer A, Schwanbeck R, Valerius T, Rösner T. Antibody isotypes for tumor immunotherapy. Transfus Med Hemother. 2017;44:320–6.

Article  PubMed  PubMed Central  Google Scholar 

Macor P, Secco E, Mezzaroba N, Zorzet S, Durigutto P, Gaiotto T, et al. Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice. Leukemia. 2015;29:406–14.

Article  CAS  PubMed  Google Scholar 

Van Lookeren CM, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9:2095–102.

Article  Google Scholar 

Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109:74–103.

Article  CAS  PubMed  Google Scholar 

Irie RF, Ollila DW, O’Day S, Morton DL. Phase I pilot clinical trial of human IgM monoclonal antibody to ganglioside GM3 in patients with metastatic melanoma. Cancer Immunol Immunother. 2004;53:110–7.

Article  CAS  PubMed  Google Scholar 

Liedtke M, Twist CJ, Medeiros BC, Gotlib JR, Berube C, Bieber MM, et al. Phase I trial of a novel human monoclonal antibody mAb216 in patients with relapsed or refractory B-cell acute lymphoblastic leukemia. Haematologica. 2012;97:30–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensel F, Timmermann W, von Rahden BHA, Rosenwald A, Brändlein S, Illert B. Ten-year follow-up of a prospective trial for the targeted therapy of gastric cancer with the human monoclonal antibody PAT-SC1. Oncol Rep. 2014;31:1059–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasche L, Menoret E, Dubljevic V, Menu E, Vanderkerken K, Lapa C, et al. A GRP78-directed monoclonal antibody recaptures response in refractory multiple myeloma with extramedullary involvement. Clin Cancer Res. 2016;22:4341–9.

Article  CAS  PubMed  Google Scholar 

Kleeff J, Ishiwata T, Kumbasar A, Friess H, Büchler MW, Lander AD, et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest. 1998;102:1662–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou C-Y, Dong Y-P, Sun X, Sui X, Zhu H, Zhao Y-Q, et al. High levels of serum glypican-1 indicate poor prognosis in pancreatic ductal adenocarcinoma. Cancer Med. 2018;7:5525–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harada E, Serada S, Fujimoto M, Takahashi Y, Takahashi T, Hara H, et al. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget. 2017;8:24741–52.

Article  PubMed  PubMed Central  Google Scholar 

Lund ME, Campbell DH, Walsh BJ. The role of glypican-1 in the tumour microenvironment. Adv Exp Med Biol. 2020;1245:163–76.

Article  CAS  PubMed  Google Scholar 

Awad W, Adamczyk B, Örnros J, Karlsson NG, Mani K, Logan DT. Structural aspects of N-Glycosylations and the C-terminal region in human glypican-1. J Biol Chem. 2015;290:22991–3008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsujii S, Serada S, Fujimoto M, Uemura S, Namikawa T, Nomura T, et al. Glypican-1 is a novel target for stroma and tumor cell dual-targeting antibody-drug conjugates in pancreatic cancer. Mol Cancer Ther. 2021. https://doi.org/10.1158/1535-7163.MCT-21-0335.

Article  PubMed  Google Scholar 

Cleary KLS, Chan HTC, James S, Glennie MJ, Cragg MS. Antibody Distance from the cell membrane regulates antibody effector mechanisms. J Immunol. 2017;198:3999–4011.

Article  CAS  PubMed  Google Scholar 

Hsiao Y-C, Shang Y, DiCara DM, Yee A, Lai J, Kim SH, et al. Immune repertoire mining for rapid affinity optimization of mouse monoclonal antibodies. MAbs. 2019;11:735–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods. 1997;201:35–55.

Article  CAS  PubMed  Google Scholar 

Pan J, Li N, Renn A, Zhu H, Chen L, Shen M, et al. GPC1-targeted immunotoxins inhibit pancreatic tumor growth in mice via depletion of short-lived GPC1 and downregulation of Wnt signaling. Mol Cancer Ther. 2022. https://doi.org/10.1158/1535-7163.MCT-21-0778.

Article  PubMed  PubMed Central  Google Scholar 

Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Investig. 2001;108:497–501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Cat B, David G. Developmental roles of the glypicans. Semin Cell Dev Biol. 2001;12:117–25.

Article  PubMed  Google Scholar 

Munekage E, Serada S, Tsujii S, Yokota K, Kiuchi K, Tominaga K, et al. A glypican-1-targeted antibody-drug conjugate exhibits potent tumor growth inhibition in glypican-1-positive pancreatic cancer and esophageal squamous cell carcinoma. Neoplasia. 2021;23:939–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:16022.

Article  PubMed  Google Scholar 

Ushio J, Kanno A, Ikeda E, Ando K, Nagai H, Miwata T, et al. Pancreatic ductal adenocarcinoma: epidemiology and risk factors. Diagnostics (Basel). 2021. https://doi.org/10.3390/diagnostics11030562.

Article  PubMed  Google Scholar 

Montemagno C, Cassim S, Pouyssegur J, Broisat A, Pagès G. From malignant progression to therapeutic targeting: current insights of mesothelin in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21114067.

Article  PubMed  PubMed Central  Google Scholar 

Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif