Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.
Aslan M, Shahbazi R, Ulubayram K, Ozpolat B. Targeted therapies for pancreatic cancer and hurdles ahead. Anticancer Res. 2018;38:6591–606.
Article CAS PubMed Google Scholar
Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy. Front Oncol. 2021;11:688377.
Article CAS PubMed PubMed Central Google Scholar
Arias-Pinilla GA, Modjtahedi H. Therapeutic application of monoclonal antibodies in pancreatic cancer: advances, challenges and future opportunities. Cancers (Basel). 2021;13:1781.
Article CAS PubMed Google Scholar
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer—clinical challenges and opportunities. Nat Rev Clin Oncol. 2020;17:527–40.
Article PubMed PubMed Central Google Scholar
Rogers LM, Veeramani S, Weiner GJ. Complement in monoclonal antibody therapy of cancer. Immunol Res. 2014;59:203–10.
Article CAS PubMed PubMed Central Google Scholar
Macor P, Capolla S, Tedesco F. Complement as a biological tool to control tumor growth. Front Immunol. 2018;9:2203.
Article PubMed PubMed Central Google Scholar
Macor P, Tedesco F. Complement as effector system in cancer immunotherapy. Immunol Lett. 2007;111:6–13.
Article CAS PubMed Google Scholar
Samsudin F, Yeo JY, Gan SK-E, Bond PJ. Not all therapeutic antibody isotypes are equal: the case of IgM versus IgG in pertuzumab and trastuzumab. Chem Sci. 2020;11:2843–54.
Article CAS PubMed PubMed Central Google Scholar
Kretschmer A, Schwanbeck R, Valerius T, Rösner T. Antibody isotypes for tumor immunotherapy. Transfus Med Hemother. 2017;44:320–6.
Article PubMed PubMed Central Google Scholar
Macor P, Secco E, Mezzaroba N, Zorzet S, Durigutto P, Gaiotto T, et al. Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice. Leukemia. 2015;29:406–14.
Article CAS PubMed Google Scholar
Van Lookeren CM, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9:2095–102.
Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109:74–103.
Article CAS PubMed Google Scholar
Irie RF, Ollila DW, O’Day S, Morton DL. Phase I pilot clinical trial of human IgM monoclonal antibody to ganglioside GM3 in patients with metastatic melanoma. Cancer Immunol Immunother. 2004;53:110–7.
Article CAS PubMed Google Scholar
Liedtke M, Twist CJ, Medeiros BC, Gotlib JR, Berube C, Bieber MM, et al. Phase I trial of a novel human monoclonal antibody mAb216 in patients with relapsed or refractory B-cell acute lymphoblastic leukemia. Haematologica. 2012;97:30–7.
Article CAS PubMed PubMed Central Google Scholar
Hensel F, Timmermann W, von Rahden BHA, Rosenwald A, Brändlein S, Illert B. Ten-year follow-up of a prospective trial for the targeted therapy of gastric cancer with the human monoclonal antibody PAT-SC1. Oncol Rep. 2014;31:1059–66.
Article CAS PubMed PubMed Central Google Scholar
Rasche L, Menoret E, Dubljevic V, Menu E, Vanderkerken K, Lapa C, et al. A GRP78-directed monoclonal antibody recaptures response in refractory multiple myeloma with extramedullary involvement. Clin Cancer Res. 2016;22:4341–9.
Article CAS PubMed Google Scholar
Kleeff J, Ishiwata T, Kumbasar A, Friess H, Büchler MW, Lander AD, et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest. 1998;102:1662–73.
Article CAS PubMed PubMed Central Google Scholar
Zhou C-Y, Dong Y-P, Sun X, Sui X, Zhu H, Zhao Y-Q, et al. High levels of serum glypican-1 indicate poor prognosis in pancreatic ductal adenocarcinoma. Cancer Med. 2018;7:5525–33.
Article CAS PubMed PubMed Central Google Scholar
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.
Article CAS PubMed PubMed Central Google Scholar
Harada E, Serada S, Fujimoto M, Takahashi Y, Takahashi T, Hara H, et al. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget. 2017;8:24741–52.
Article PubMed PubMed Central Google Scholar
Lund ME, Campbell DH, Walsh BJ. The role of glypican-1 in the tumour microenvironment. Adv Exp Med Biol. 2020;1245:163–76.
Article CAS PubMed Google Scholar
Awad W, Adamczyk B, Örnros J, Karlsson NG, Mani K, Logan DT. Structural aspects of N-Glycosylations and the C-terminal region in human glypican-1. J Biol Chem. 2015;290:22991–3008.
Article CAS PubMed PubMed Central Google Scholar
Tsujii S, Serada S, Fujimoto M, Uemura S, Namikawa T, Nomura T, et al. Glypican-1 is a novel target for stroma and tumor cell dual-targeting antibody-drug conjugates in pancreatic cancer. Mol Cancer Ther. 2021. https://doi.org/10.1158/1535-7163.MCT-21-0335.
Cleary KLS, Chan HTC, James S, Glennie MJ, Cragg MS. Antibody Distance from the cell membrane regulates antibody effector mechanisms. J Immunol. 2017;198:3999–4011.
Article CAS PubMed Google Scholar
Hsiao Y-C, Shang Y, DiCara DM, Yee A, Lai J, Kim SH, et al. Immune repertoire mining for rapid affinity optimization of mouse monoclonal antibodies. MAbs. 2019;11:735–46.
Article CAS PubMed PubMed Central Google Scholar
Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods. 1997;201:35–55.
Article CAS PubMed Google Scholar
Pan J, Li N, Renn A, Zhu H, Chen L, Shen M, et al. GPC1-targeted immunotoxins inhibit pancreatic tumor growth in mice via depletion of short-lived GPC1 and downregulation of Wnt signaling. Mol Cancer Ther. 2022. https://doi.org/10.1158/1535-7163.MCT-21-0778.
Article PubMed PubMed Central Google Scholar
Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Investig. 2001;108:497–501.
Article CAS PubMed PubMed Central Google Scholar
De Cat B, David G. Developmental roles of the glypicans. Semin Cell Dev Biol. 2001;12:117–25.
Munekage E, Serada S, Tsujii S, Yokota K, Kiuchi K, Tominaga K, et al. A glypican-1-targeted antibody-drug conjugate exhibits potent tumor growth inhibition in glypican-1-positive pancreatic cancer and esophageal squamous cell carcinoma. Neoplasia. 2021;23:939–50.
Article CAS PubMed PubMed Central Google Scholar
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:16022.
Ushio J, Kanno A, Ikeda E, Ando K, Nagai H, Miwata T, et al. Pancreatic ductal adenocarcinoma: epidemiology and risk factors. Diagnostics (Basel). 2021. https://doi.org/10.3390/diagnostics11030562.
Montemagno C, Cassim S, Pouyssegur J, Broisat A, Pagès G. From malignant progression to therapeutic targeting: current insights of mesothelin in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21114067.
Article PubMed PubMed Central Google Scholar
Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62.
Comments (0)