Muscatello, D. J., Bein, K. J., & Dinh, M. M. (2018). Influenza-associated delays in patient throughput and premature patient departure in emergency departments in New South Wales, Australia: A time series analysis. EMA - Emergency Medicine Australasia, 30(1), 77–80. https://doi.org/10.1111/1742-6723.12808
Sartini, M., Carbone, A., Demartini, A., Giribone, L., Oliva, M., Spagnolo, A. M., Cremonesi, P., Canale, F., & Cristina, M. L. (2022). Overcrowding in Emergency Department: Causes, Consequences, and Solutions—A Narrative Review. In Healthcare (Switzerland) (Vol. 10, Issue 9). MDPI. https://doi.org/10.3390/healthcare10091625
Aleksandra, S., Robert, K., Klaudia, K., Dawid, L., & Mariusz, S. (2024). Artificial Intelligence in Optimizing the Functioning of Emergency Departments; a Systematic Review of Current Solutions. In Archives of Academic Emergency Medicine (Vol. 12, Issue 1). Shaheed Beheshti University of Medical Sciences and Health Services. https://doi.org/10.22037/aaem.v12i1.2110
Hurst, K., Kelley-Patterson, D., & Knapton, A. (2017). Emergency department attendances and GP patient satisfaction. London Journal of Primary Care, 9(5), 69–72. https://doi.org/10.1080/17571472.2017.1333616
Article PubMed Central PubMed Google Scholar
Angler, Y., Lossin, A., & Goetz, O. (2024). The importance of discrete event simulation as a methodology for performance evaluation in the emergency department. Emergency Care Journal. https://doi.org/10.4081/ecj.2024.12562
Ortiz-Barrios, M., Petrillo, A., Arias-Fonseca, S., McClean, S., de Felice, F., Nugent, C., & Uribe-López, S. A. (2024a). An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study. International Journal of Emergency Medicine, 17(1). https://doi.org/10.1186/s12245-024-00626-0
Schnelle J.F., Schrooyer L.D., & Simmons S.F. (2016). Determining Nurse Aide Staffing Requirements to Provide Activities of Daily Living Care Based on Resident Workload: A Staffing Simulation Model. J Am Med Dir Assoc, 11(17). https://doi.org/10.1016/j.jamda.2016.08.006
Blanco, B. B., Pinheiro, E. B. A., & Dos Santos, I. L. (2024). Discrete Event Simulation To Analyze Patient Priorization in the Context of an Emergency Department. Pesquisa Operacional, 44. https://doi.org/10.1590/0101-7438.2023.043.00274435
Kim, J. K. (2024). Enhancing Patient Flow in Emergency Departments: A Machine Learning and Simulation-Based Resource Scheduling Approach. Applied Sciences (Switzerland), 14(10). https://doi.org/10.3390/app14104264
Peláez-Rodríguez, C., Torres-López, R., Pérez-Aracil, J., López-Laguna, N., Sánchez-Rodríguez, S., & Salcedo-Sanz, S. (2024). An explainable machine learning approach for hospital emergency department visits forecasting using continuous training and multi-model regression. Computer Methods and Programs in Biomedicine, 245. https://doi.org/10.1016/j.cmpb.2024.108033
Fischer, G. S., Ramos, G. de O., Costa, C. A. da, Alberti, A. M., Griebler, D., Singh, D., & Righi, R. da R. (2024). Multi-Hospital Management: Combining Vital Signs IoT Data and the Elasticity Technique to Support Healthcare 4.0. Internet of Things, 5(2), 381–408. https://doi.org/10.3390/iot5020019
Cheng, R., Aggarwal, A., Chakraborty, A., Harish, V., McGowan, M., Roy, A., Szulewski, A., & Nolan, B. (2024). Implementation considerations for the adoption of artificial intelligence in the emergency department. In American Journal of Emergency Medicine (Vol. 82, pp. 75–81). W.B. Saunders. https://doi.org/10.1016/j.ajem.2024.05.020
Shin, S. Y., Balasubramanian, H., Brun, Y., Henneman, P. L., & Osterweil, L. J. (2017). Discrete-Event Simulation and Integer Linear Programming for Constraint-Aware Resource Scheduling.
Van Bockstal, E., & Maenhout, B. (2019). A study on the impact of prioritising emergency department arrivals on the patient waiting time. Health Care Management Science, 22(4), 589–614. https://doi.org/10.1007/s10729-018-9447-5
Lopes, M. A., Almeida, Á. S., & Almada-Lobo, B. (2018). Forecasting the medical workforce: a stochastic agent-based simulation approach. Health Care Management Science, 21(1), 52–75. https://doi.org/10.1007/s10729-016-9379-x
Asamani, J. A., Christmals, C. Dela, & Reitsma, G. M. (2021). The needs-based health workforce planning method: A systematic scoping review of analytical applications. In Health Policy and Planning (Vol. 36, Issue 8, pp. 1325–1343). Oxford University Press. https://doi.org/10.1093/heapol/czab022
Lee, J. T., Crettenden, I., Tran, M., Miller, D., Cormack, M., Cahill, M., Li, J., Sugiura, T., & Xiang, F. (2024). Methods for health workforce projection model: systematic review and recommended good practice reporting guideline. In Human Resources for Health (Vol. 22, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12960-024-00895-z
Haas, M. R. C., Hopson, L. R., & Zink, B. J. (2020). Too Big Too Fast? Potential Implications of the Rapid Increase in Emergency Medicine Residency Positions. AEM Education and Training, 4(S1). https://doi.org/10.1002/aet2.10400
Khandelwal, K., Upadhyay, A. K., & Rukadikar, A. (2024). The synergy of human resource development (HRD) and artificial intelligence (AI) in today’s workplace. Human Resource Development International, 27(4), 622–639. https://doi.org/10.1080/13678868.2024.2375935
Crouch, R., & Williams, S. (2006). Patient dependency in the emergency department (ED): Reliability and validity of the Jones Dependency Tool (JDT). Accident and Emergency Nursing, 14(4), 219–229. https://doi.org/10.1016/j.aaen.2006.06.005
Bosak, S., Yazdani, S., & Ayati, M. H. (2023). Approaches and Components of Health Workforce Planning Models: A Systematic Review. In Iranian Journal of Medical Sciences (Vol. 48, Issue 4, pp. 358–369). Shiraz University of Medical Sciences. https://doi.org/10.30476/ijms.2022.94662.2600
Lin, Y., Hoyt, A. C., Manuel, V. G., Inkelas, M., Ayvaci, M. U. S., Ahsen, M. E., & Hsu, W. (2025). Risk-Stratified Screening: A Simulation Study of Scheduling Templates on Daily Mammography Recalls. Journal of the American College of Radiology, 22(3), 297–306. https://doi.org/10.1016/j.jacr.2024.12.010
Article PubMed Central PubMed Google Scholar
Nas, S., & Koyuncu, M. (2019). Emergency Department Capacity Planning: A Recurrent Neural Network and Simulation Approach. Computational and Mathematical Methods in Medicine, 2019. https://doi.org/10.1155/2019/4359719
Lopes, E. T., Fernandes, L. T., Cunha, P. G., Gonçalves, B. S., & Lima, R. M. (2025). Factors impacting patient flows in the emergency department. International Journal of Lean Six Sigma. https://doi.org/10.1108/IJLSS-10-2024-0219
Vecillas Martin, D., Berruezo Fernández, C., & Gento Municio, A. M. (2025). Systematic Review of Discrete Event Simulation in Healthcare and Statistics Distributions. In Applied Sciences (Switzerland) (Vol. 15, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/app15041861
Berikol, G. B., Kanbakan, A., Ilhan, B., & Doğanay, F. (2025). Mapping artificial intelligence models in emergency medicine: A scoping review on artificial intelligence performance in emergency care and education. In Turkish Journal of Emergency Medicine (Vol. 25, Issue 2, pp. 67–91). Wolters Kluwer Medknow Publications. https://doi.org/10.4103/tjem.tjem_45_25
Gartner, D., & Padman, R. (2020). Machine learning for healthcare behavioural OR: Addressing waiting time perceptions in emergency care. Journal of the Operational Research Society, 71(7), 1087–1101. https://doi.org/10.1080/01605682.2019.1571005
Charalel, R. A., Guenette, J. P., & Lee, C. I. (2025). Screening via Imaging: Updates and Innovations. In Journal of the American College of Radiology (Vol. 22, Issue 3, pp. 247–248). Elsevier B.V. https://doi.org/10.1016/j.jacr.2025.01.007
Schutz, J., Sauvey, C., Nițu, E. L., & Gavriluță, A. C. (2025). A Practical and Sustainable Approach to Industrial Engineering Discrete-Event Simulation with Free Mathematical and Programming Software. Sustainability (Switzerland), 17(9). https://doi.org/10.3390/su17093973
Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5–6), 519–533. https://doi.org/10.1080/713827181
Ortiz-Barrios, M., Arias-Fonseca, S., Ishizaka, A., Barbati, M., Avendaño-Collante, B., & Navarro-Jiménez, E. (2023). Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: a case study. Journal of business research, 160, 113806.
Article PubMed Central PubMed Google Scholar
Yucesan, M., Gul, M., & Celik, E. (2020). A multi-method patient arrival forecasting outline for hospital emergency departments. International Journal of Healthcare Management, 13(sup1), 283–295. https://doi.org/10.1080/20479700.2018.1531608
Baek, M. S., Chung, C. R., Kim, H. J., Cho, W. H., Cho, Y. J., Park, S.,… Hong, S.B. (2018). Age is major factor for predicting survival in patients with acute respiratory failure on extracorporeal membrane oxygenation: a Korean multicenter study. Journal of Thoracic Disease, 10(3), 1406.
Balbi, M., Caroli, A., Corsi, A., Milanese, G., Surace, A., Di Marco, F.,… Sironi,S. (2021). Chest X-ray for predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the emergency department. European radiology, 31, 1999–2012.
Corica, B., Tartaglia, F., D’Amico, T., Romiti, G. F., & Cangemi, R. (2022). Sex and gender differences in community-acquired pneumonia. Internal and Emergency Medicine, 17(6), 1575–1588.
Article PubMed Central PubMed Google Scholar
Ortiz-Barrios, M., Ishizaka, A., Barbati, M., Arias-Fonseca, S., Khan, J., Gul, M.,… Pérez-Aguilar, A. (2024). Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons. Computers & Industrial Engineering, 194, 110405.
Arslan, S., Yildiz, G., Özdemir, L., Kaysoydu, E., & Özdemir, B. (2018). Association between blood pressure, inflammation and spirometry parameters in chronic obstructive pulmonary disease. The Korean Journal of Internal Medicine, 34(1), 108.
Article PubMed Central PubMed Google Scholar
De Freitas, V. M., Chiloff, D. M., Bosso, G. G., Teixeira, J. O. P., Hernandes, I.C. D. G., Padilha, M. D. P.,… Rangel, É. B. (2022). A machine learning model for predicting hospitalization in patients with respiratory symptoms during the COVID-19 pandemic. Journal of Clinical Medicine, 11(15), 4574.
Sieber, P., Flury, D., Güsewell, S., Albrich, W. C., Boggian, K., Gardiol, C.,… Kohler,P. (2021). Characteristics of patients with Coronavirus Disease 2019 (COVID-19) and seasonal influenza at time of hospital admission: a single center comparative study.BMC Infectious Diseases, 21, 1–9.
Gul, M. H., Htun, Z. M., & Inayat, A. (2021). Role of fever and ambient temperature in COVID-19. Expert Review of Respiratory Medicine, 15(2), 171–173.
Article CAS PubMed Google Scholar
Ebell, M. H., Rahmatullah, I., Cai, X., Bentivegna, M., Hulme, C., Thompson, M., & Lutz, B. (2021). A systematic review of clinical prediction rules for the diagnosis of influenza. The Journal of the American Board of Family Medicine, 34(6), 1123–1140.
Chorazka, M., Flury, D., Herzog, K., Albrich, W. C., & Vuichard-Gysin, D. (2021). Clinical outcomes of adults hospitalized for laboratory confirmed respiratory syncytial virus or influenza virus infection. PLoS One, 16(7), e0253161.
Chakshu, N. K., & Nithiarasu, P. (2022). An AI based digital-twin for prioritising pneumonia patient treatment. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236(11), 1662–1674.
Patton, M. J., Orihuela, C. J., Harrod, K. S., Bhuiyan, M. A., Dominic, P., Kevil,C. G.,… Gaggar, A. (2023). COVID-19 bacteremic co-infection is a major risk factor for mortality, ICU admission, and mechanical ventilation. Critical Care, 27(1), 34.
Carmichael, H., Coquet, J., Sun, R., Sang, S., Groat, D., Asch, S. M.,… Hernandez-Boussard,T. (2021). Learning from past respiratory failure patients to triage COVID-19 patient ventilator needs: A multi-institutional study. Journal of biomedical informatics, 119, 103802.
Alizadeh, N., Tabatabaei, F. S., Azimi, A., Faraji, N., Akbarpour, S., Dianatkhah, M., & Moghaddas, A. (2022). Lactate dehydrogenase to albumin ratio as a predictive factor of COVID-19 patients’ outcome; a cross-sectional study. Archives of Academic Emergency Medicine, 10(1).
Zhao, Y., Yu, C., Ni, W., Shen, H., Qiu, M., & Zhao, Y. (2021). Peripheral blood inflammatory markers in predicting prognosis in patients with COVID-19. Some differences with influenza A. Journal of Clinical Laboratory Analysis, 35(1), e23657.
Bai, Y., Guo, Y., & Gu, L. (2023). Additional risk factors improve mortality prediction for patients hospitalized with influenza pneumonia: a retrospective, single-center case–control study. BMC Pulmonary Medicine, 23(1), 19.
Article PubMed Central CAS PubMed Google Scholar
Bansal, A., Padappayil, R. P., Garg, C., Singal, A., Gupta, M., & Klein, A. (2020). Utility of artificial intelligence amidst the COVID 19 pandemic: a review. Journal of Medical Systems, 44, 1–6.
Bhapkar, H. R., Mahalle, P. N., Dey, N., & Santosh, K. C. (2020). Revisited COVID-19 mortality and recovery rates: are we missing recovery time period?. Journal of Medical Systems, 44(12), 202.
Article PubMed Central CAS PubMed Google Scholar
Hammoudi, K., Benhabiles, H., Melkemi, M., Dornaika, F., Arganda-Carreras, I., Collard, D., & Scherpereel, A. (2021). Deep learning on chest X-ray images to detect and evaluate pneumonia cases at the era of COVID-19. Journal of medical systems, 45(7), 75.
Article PubMed Central CAS PubMed Google Scholar
Khan, W., Zaki, N., & Ali, L. (2021). Intelligent pneumonia identification from chest x-rays: A systematic literature review. IEEE Access, 9, 51747–51771.
Shashikumar, S. P., Wardi, G., Paul, P., Carlile, M., Brenner, L. N., Hibbert, K.A.,… Malhotra, A. (2021). Development and prospective validation of a deep learning algorit
Comments (0)