World Health Organization, Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases. Accessed 20 Aug 2024, 2024.
Joshi, R. C., Khan, J. S., Pathak, V. K., and Dutta, M. K., AI-CardioCare: Artificial intelligence based device for cardiac health monitoring. IEEE Trans. Hum.-Mach. Syst. 52(6):1292–1302, 2022. https://doi.org/10.1109/THMS.2022.3211460
Li, P., Hu, Y., and Liu, Z. -P., Prediction of cardiovascular diseases by integrating multi-modal features with machine learning methods. Biomed. Signal Process. Control 66:102474, 2021. https://doi.org/10.1016/j.bspc.2021.102474
Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F. J., Castells, F., Roig, J. M., Silva, I., Johnson, A. E. W., Syed, Z., Schmidt, S. E., Papadaniil, C. D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M. R., Sameni, R., Mark, R. G., and Clifford, G. D., An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12):2181, 2016. https://doi.org/10.1088/0967-3334/37/12/2181
Baloglu, U. B., Talo, M., Yildirim, O., Tan, R. S., and Acharya, U. R., Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit. Lett. 122:23–30, 2019. https://doi.org/10.1016/j.patrec.2019.02.016
Ribeiro, A. H., Ribeiro, M. H., Paixão, G. M. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., Ferreira, M. P. S., Andersson, C. R., Macfarlane, P. W., Jr., W. M., Schön, T. B., and Ribeiro, A. L. P.: Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11(1):1760, 2020. https://doi.org/10.1038/s41467-020-15432-4
Haimovich, J. S., Diamant, N., Khurshid, S., Di Achille, P., Reeder, C., Friedman, S., Singh, P., Spurlock, W., Ellinor, P.T., Philippakis, A., Batra, P., Ho, J. E., and Lubitz, S. A., Artificial intelligence–enabled classification of hypertrophic heart diseases using electrocardiograms. Cardiovasc. Digit. Health J. 4(2):48–59, 2023. https://doi.org/10.1016/j.cvdhj.2023.03.001
De Marco, F., Ferrucci, F., Risi, M., and Tortora, G., Classification of QRS complexes to detect Premature Ventricular Contraction using machine learning techniques. PLoS One 17(8):0268555, 2022. https://doi.org/10.1371/journal.pone.0268555
Khan, F.A., Abid, A., Khan, M.S.: Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features. Physiol. Meas. 41(5):055006, 2020. https://doi.org/10.1088/1361-6579/ab8770
Al-Issa, Y., and Alqudah, A. M., A lightweight hybrid deep learning system for cardiac valvular disease classification. Sci. Rep. 12(1):14297, 2022. https://doi.org/10.1038/s41598-022-18293-7
Nguyen, M. T., Lin, W. W., and Huang, J. H., Heart sound classification using deep learning techniques based on log-mel spectrogram. Circ. Syst. Signal Process. 42(1):344–360, 2023. https://doi.org/10.1007/s00034-022-02124-1
Li, H., Wang, X., Liu, C., Wang, Y., Li, P., Tang, H., Yao, L., and Zhang, H., Dual-input neural network integrating feature extraction and deep learning for coronary artery disease detection using electrocardiogram and phonocardiogram. IEEE Access 7:146457–146469, 2019. https://doi.org/10.1109/ACCESS.2019.2943197
Chakir, F., Jilbab, A., Nacir, C., and Hammouch, A., Recognition of cardiac abnormalities from synchronized ECG and PCG signals. Phys. Eng. Sci. Med. 43(2):673–677, 2020. https://doi.org/10.1007/s13246-020-00875-2
Ajitkumar Singh, S., Ashinikumar Singh, S., Dinita Devi, N., and Majumder, S., Heart Abnormality classification using PCG and ECG recordings. Comput. Sist. 25(2):381–391, 2021. https://doi.org/10.13053/cys-25-2-3447
Li, J., Ke, L., Du, Q., Chen, X., and Ding, X., Multi-modal cardiac function signals classification algorithm based on improved D-S evidence theory. Biomed. Signal Process. Control 71:103078, 2022. https://doi.org/10.1016/j.bspc.2021.103078
Li, H., Wang, X., Liu, C., Li, P., and Jiao, Y., Integrating multi-domain deep features of electrocardiogram and phonocardiogram for coronary artery disease detection. Comput. Biol. Med. 138:104914, 2021. https://doi.org/10.1016/j.compbiomed.2021.104914
Li, J., Ke, L., Du, Q., Ding, X., and Chen, X., Research on the classification of ECG and PCG signals based on BiLSTM-GoogLeNet-DS. Appl. Sci. 12(22), 2022. https://doi.org/10.3390/app122211762
Morshed, M., and Fattah, S. A., A deep neural network for heart valve defect classification from synchronously recorded ECG and PCG. IEEE Sens. Lett. 7(9):1–4, 2023. https://doi.org/10.1109/LSENS.2023.3307053
Jyothi, P., and Pradeepini, G., Heart disease detection system based on ECG and PCG signals with the aid of GKVDLNN classifier. Multimed. Tools Appl. 83(10):30587–30612, 2024. https://doi.org/10.1007/s11042-023-16562-9
Hettiarachchi, R., Haputhanthri, U., Herath, K., Kariyawasam, H., Munasinghe, S., Wickramasinghe, K., Samarasinghe, D., De Silva, A., and Edussooriya, C. U. S., A novel transfer learning-based approach for screening pre-existing heart diseases using synchronized ECG signals and heart sounds. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2021. https://doi.org/10.1109/ISCAS51556.2021.9401093
Vieira, H. M. C., Multimodal deep learning for heart sound and electrocardiogram classification. Dissertation. Master’s thesis, University of Porto: Porto, Portugal, 2023.
Mathew, G., Barbosa, D., Prince, J., and Venkatraman, S., Foundation models for cardiovascular disease detection via biosignals from digital stethoscopes. Npj Cardiovasc. Health 1(1):25, 2024. https://doi.org/10.1038/s44325-024-00027-5
Calzoni, A., Savardi, M., and Signoroni, A., Bimodal ECG-PCG cardiovascular disease detection: A close look at transfer learning and data collection issues. In: CEUR workshop proceedings - 3rd AIxIA workshop on artificial intelligence for healthcare, HC@AIxIA 2024, vol. 3880, pp. 93–107, 2024.
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. -K., and Stanley, H. E., PhysioBank, physiotoolkit, and physionet. Circulation 101(23):215–220, 2000. https://doi.org/10.1161/01.CIR.101.23.e215
Yaseen, Son, G.-Y., and Kwon, S., Classification of heart sound signal using multiple features. Appl. Sci. 8(12), 2018. https://doi.org/10.3390/app8122344
Oliveira, J., Renna, F., Costa, P., Nogueira, M., Oliveira, A. C., Elola, A., Ferreira, C., Jorge, A., Rad, A. B., Reyna, M., Sameni, R., Clifford, G., and Coimbra, M., The CirCor DigiScope phonocardiogram dataset (version 1.0.3). PhysioNet, 2022. https://doi.org/10.13026/tshs-mw03
Oliveira, J., Renna, F., Costa, P. D., Nogueira, M., Oliveira, C., Ferreira, C., Jorge, A., Mattos, S., Hatem, T., Tavares, T., Elola, A., Rad, A. B., Sameni, R., Clifford, G. D., and Coimbra, M. T., The CirCor DigiScope dataset: From murmur detection to murmur classification. IEEE J. Biomed. Health Inform. 26(6):2524–2535, 2022. https://doi.org/10.1109/JBHI.2021.3137048
Li, P., Prediction of cardiovascular diseases by integrating multi-modal features with machine learning methods. Zenodo (2020). https://doi.org/10.5281/zenodo.4263528
Koike, T., Qian, K., Kong, Q., Plumbley, M. D., Schuller, B. W., and Yamamoto, Y., Audio for audio is better? An investigation on transfer learning models for heart sound classification. In: 2020 42nd Annual international conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 74–77, 2020. https://doi.org/10.1109/EMBC44109.2020.9175450
Kong, Q., Cao, Y., Iqbal, T., Wang, Y., Wang, W., and Plumbley, M. D., PANNs: Large-scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 28:2880–2894, 2020. https://doi.org/10.1109/TASLP.2020.3030497
Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., Plakal, M., and Ritter, M., Audio set: An ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780, 2017. https://doi.org/10.1109/ICASSP.2017.7952261
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2):336–359, 2020. https://doi.org/10.1007/s11263-019-01228-7
Li, S., Li, T., Sun, C., Yan, R., and Chen, X., Multilayer grad-CAM: An effective tool towards explainable deep neural networks for intelligent fault diagnosis. J. Manuf. Syst. 69:20–30, 2023. https://doi.org/10.1016/j.jmsy.2023.05.027
Ribeiro, M., Singh, S., and Guestrin, C., "Why should i trust you?": Explaining the predictions of any classifier. In: KDD ’16: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135–1144, 2016. https://doi.org/10.1145/2939672.2939778
McInnes, L., Healy, J., Saul, N., and Großberger, L., UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3(29):861, 2018. https://doi.org/10.21105/joss.00861
Comments (0)