Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL et al (2023) Heart disease and stroke statistics-2023 update: a report from the American heart association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123
Article PubMed PubMed Central Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63. https://doi.org/10.1038/nature09922
Article CAS PubMed PubMed Central Google Scholar
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585. https://doi.org/10.1038/nm.3145
Article CAS PubMed PubMed Central Google Scholar
Goh YQ, Cheam G, Wang Y (2021) Understanding choline bioavailability and utilization: first step toward personalizing choline nutrition. J Agric Food Chem 69(37):10774–10789. https://doi.org/10.1021/acs.jafc.1c03077
Article CAS PubMed Google Scholar
Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X et al (2019) Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 40(7):583–594. https://doi.org/10.1093/eurheartj/ehy799
Article CAS PubMed Google Scholar
Schmedes M, Balderas C, Aadland EK, Jacques H, Lavigne C, Graff IE et al (2018) The effect of lean-seafood and non-seafood diets on fasting and postprandial serum metabolites and lipid species: results from a randomized crossover intervention study in healthy adults. Nutrients 10(5):598. https://doi.org/10.3390/nu10050598
Article CAS PubMed PubMed Central Google Scholar
Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J et al (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res 61(1):1600324. https://doi.org/10.1002/mnfr.201600324
Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA et al (2014) Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr 100(3):778–786. https://doi.org/10.3945/ajcn.114.087692
Article CAS PubMed PubMed Central Google Scholar
Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 109(52):21307–21312. https://doi.org/10.1073/pnas.1215689109
Article PubMed PubMed Central Google Scholar
Li Q, Chen H, Zhang M, Wu T, Liu R, Zhang Z (2019) Potential correlation between dietary fiber-suppressed microbial conversion of choline to trimethylamine and formation of methylglyoxal. J Agric Food Chem 67(48):13247–13257. https://doi.org/10.1021/acs.jafc.9b04860
Article CAS PubMed Google Scholar
Vázquez-Fresno R, Llorach R, Urpi-Sarda M et al (2015) Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: a 1- and 3-year follow-up in the PREDIMED study. J Proteome Res 14(1):531–540. https://doi.org/10.1021/pr5007894
Article CAS PubMed Google Scholar
Burns KF, LaMonte MJ, Hageman Blair R, Tabung FK, Rexrode KM, Snetselaar LG et al (2024) Developing and evaluating the construct validity of a dietary pattern predictive of plasma TMAO and choline. Nutr Metab Cardiovasc Dis 34(9):2190–2202. https://doi.org/10.1016/j.numecd.2024.05.022
Article CAS PubMed Google Scholar
Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL et al (2016) Trimethylamine n-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κb. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002767
Article PubMed PubMed Central Google Scholar
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1):111–124. https://doi.org/10.1016/j.cell.2016.02.011
Article CAS PubMed PubMed Central Google Scholar
Lever M, George PM, Slow S et al (2014) Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLoS ONE 9(12):e114969. https://doi.org/10.1371/journal.pone.0114969
Article CAS PubMed PubMed Central Google Scholar
Shafi T, Powe NR, Meyer TW et al (2017) Trimethylamine N-oxide and cardiovascular events in hemodialysis patients. J Am Soc Nephrol 28(1):321–331. https://doi.org/10.1681/ASN.2016030374
Article CAS PubMed Google Scholar
Tang WH, Wang Z, Li XS et al (2017) Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin Chem 63(1):297–306. https://doi.org/10.1373/clinchem.2016.263640
Article CAS PubMed Google Scholar
Fretts AM, Hazen SL, Jensen P et al (2022) Association of trimethylamine N-oxide and metabolites with mortality in older adults. JAMA Netw Open 5(5):e2213242. https://doi.org/10.1001/jamanetworkopen.2022.13242
Article PubMed PubMed Central Google Scholar
Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L (2017) Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc 6(7):e004947. https://doi.org/10.1161/JAHA.116.004947
Article PubMed PubMed Central Google Scholar
Bjørnestad E, Dhar I, Svingen GFT, Pedersen ER, Ørn S, Svenningsson MM et al (2022) Circulating trimethylamine N-oxide levels do not predict 10-year survival in patients with or without coronary heart disease. J Intern Med 292(6):915–924. https://doi.org/10.1111/joim.13550
Article CAS PubMed PubMed Central Google Scholar
Guasch-Ferré M, Hu FB, Ruiz-Canela M, Bulló M, Toledo E, Wang DD et al (2017) Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with Mediterranean diet) study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.006524
Article PubMed PubMed Central Google Scholar
Brennan L, Hu FB, Sun Q (2021) Metabolomics meets nutritional epidemiology: harnessing the potential in metabolomics data. Metabolites. https://doi.org/10.3390/metabo11100709
Article PubMed PubMed Central Google Scholar
Guasch-Ferré M, Bhupathiraju SN, Hu FB (2018) Use of metabolomics in improving assessment of dietary intake. Clin Chem 64(1):82–98. https://doi.org/10.1373/clinchem.2017.272344
Article CAS PubMed Google Scholar
Auro K, Joensuu A, Fischer K et al (2014) A metabolic view on menopause and ageing. Nat Commun 5(1):4708. https://doi.org/10.1038/ncomms5708
Article CAS PubMed Google Scholar
The Women’s Health Initiative Study Group (1998) Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials 19(1):61–109. https://doi.org/10.1016/s0197-2456(97)00078-0
Women’s Health Initiative [Internet]. BA24 - Metabolomics of CHD in the WHI [cited 16 Jul 2024]. Available from: https://sp.whi.org/researchers/data/WHIStudies/StudySites/BA24/
dbGAP [Internet]. Metabolomics of Coronary Heart Disease (CHD) in the WHI [cited 16 Jul 2024]. Available from: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001334.v2.p3
Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker LF, Gopal S et al (2018) Metabolic predictors of incident coronary heart disease in women. Circulation 137(8):841–853. https://doi.org/10.1161/CIRCULATIONAHA.117.029468
Comments (0)