Increased blood-brain barrier permeability is associated with dysfunctional α band connectivity in early-stage Parkinson’s disease

Babiloni C, Frisoni GB, Vecchio F et al (2010) Global functional coupling of resting EEG rhythms is related to white-matter lesions along the cholinergic tracts in subjects with amnesic mild cognitive impairment. J Alzheimer’s Disease 19. https://doi.org/10.3233/JAD-2010-1290

Babiloni C, Del Percio C, Lizio R et al (2018) Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to alzheimer’s and parkinson’s diseases. Clin Neurophysiol. 129 https://doi.org/10.1016/j.clinph.2018.01.009

Article  PubMed  Google Scholar 

Badrulhisham F, Pogatzki-Zahn E, Segelcke D et al (2024) Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav Immun 115. https://doi.org/10.1016/j.bbi.2023.11.005

Baggio HC, Abos A, Segura B et al (2018) Statistical inference in brain graphs using threshold-free network-based statistics. Hum Brain Mapp 39. https://doi.org/10.1002/hbm.24007

Bohnen NI, Kanel P, Müller MLTM (2018) Molecular imaging of the cholinergic system in parkinson’s disease. In: International Review of Neurobiology

Bovenzi R, Schirinzi T, Conti M et al (2024) A biological characterization of patients with postmenopausal parkinson’s disease. J Neurol in

Bruno M, Bonomi CG, Ricci F et al (2024) Blood–brain barrier permeability is associated with different neuroinflammatory profiles in alzheimer’s disease. Eur J Neurol 31. https://doi.org/10.1111/ene.16095

Carvey PM, Zhao CH, Hendey B et al (2005) 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22. https://doi.org/10.1111/j.1460-9568.2005.04281.x

Chaudhuri KR, Martinez-Martin P, Brown RG et al (2007) The metric properties of a novel non-motor symptoms scale for parkinson’s disease: results from an international pilot study. Mov Disord. https://doi.org/10.1002/mds.21596

Article  PubMed  Google Scholar 

Chesselet MF, Richter F, Zhu C et al (2012) A progressive mouse model of parkinson’s disease: the Thy1-aSyn (Line 61) mice. Neurotherapeutics 9

Conti M, Bovenzi R, Garasto E et al (2022a) Brain functional connectivity in de Novo parkinson’s disease patients based on clinical EEG. Front Neurol 13. https://doi.org/10.3389/fneur.2022.844745

Conti M, Stefani A, Bovenzi R et al (2022b) STN-DBS induces acute changes in β-Band cortical functional connectivity in patients with parkinson’s disease. Brain Sci 12. https://doi.org/10.3390/brainsci12121606

Conti M, Guerra A, Pierantozzi M et al (2023) Band-Specific altered cortical connectivity in early parkinson’s disease and its clinical correlates. Mov Disord 1–13. https://doi.org/10.1002/mds.29615

Conti M, Bovenzi R, Palmieri MG et al (2024a) Early effect of onabotulinumtoxin A on EEG-based functional connectivity in patients with chronic migraine: A pilot study. Headache 64:825–837. https://doi.org/10.1111/head.14750

Article  PubMed  Google Scholar 

Conti M, D’Onofrio V, Bovenzi R et al (2024b) Cortical functional connectivity changes in the Body-First and Brain-First subtypes of parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.30071

Article  PubMed  Google Scholar 

Conti M, Garasto E, Bovenzi R et al (2024c) Insular and limbic abnormal functional connectivity in early-stage parkinson’s disease patients with autonomic dysfunction. Cereb Cortex 34. https://doi.org/10.1093/cercor/bhae270

Conti M, Bovenzi R, Pierantozzi M et al (2025) Sex hormones shape EEG-based functional connectivity in early-stage parkinson’s disease patients. Neuroimage Clin 45. https://doi.org/10.1016/j.nicl.2024.103721

De Micco R, Agosta F, Basaia S et al (2021) Functional connectomics and disease progression in Drug-Naïve parkinson’s disease patients. Mov Disord 36. https://doi.org/10.1002/mds.28541

Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31. https://doi.org/10.1016/j.neuroimage.2006.01.021

Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12. https://doi.org/10.1016/0022-3956(75)90026-6

Goetz CG, Poewe W, Rascol O et al (2004) Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 19. https://doi.org/10.1002/mds.20213

Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement disorder Society-Sponsored revision of the unified parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23. https://doi.org/10.1002/mds.22340

Grech R, Cassar T, Muscat J et al (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:1–33. https://doi.org/10.1186/1743-0003-5-25

Article  Google Scholar 

Hardmeier M, Hatz F, Bousleiman H et al (2014) Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0108648

Hillmer L, Erhardt EB, Caprihan A et al (2023) Blood-brain barrier disruption measured by albumin index correlates with inflammatory fluid biomarkers. J Cereb Blood Flow Metab 43. https://doi.org/10.1177/0271678X221146127

Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84. https://doi.org/10.1073/pnas.84.16.5976

Hoenen C, Gustin A, Birck C et al (2016) Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the a53t mutant. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0162717

Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13. https://doi.org/10.1016/S0893-6080(00)00026-5

Iadecola C (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96

Jatoi MA, Kamel N, Faye I et al (2016) BEM based solution of forward problem for brain source estimation. IEEE 2015 International Conference on Signal and Image Processing Applications, ICSIPA 2015 - Proceedings 180–185. https://doi.org/10.1109/ICSIPA.2015.7412186

Jwo DJ, Chang WY, Wu IH (2021) Windowing techniques, the Welch method for improvement of power spectrum Estimation. Computers Mater Continua 67. https://doi.org/10.32604/cmc.2021.014752

Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17

Khaliq F, Oberhauser J, Wakhloo D, Mahajani S (2023) Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen Res 18

Khan E, Hasan I, Haque ME (2023) Parkinson’s disease: exploring different animal model systems. Int J Mol Sci 24

Kuan WL, Bennett N, He X et al (2016) α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol 285. https://doi.org/10.1016/j.expneurol.2016.09.003

Lau K, Kotzur R, Richter F (2024) Blood–brain barrier alterations and their impact on parkinson’s disease pathogenesis and therapy. Transl Neurodegener 13

Liguori C, Olivola E, Pierantozzi M et al (2016) Cerebrospinal-fluid alzheimer’s disease biomarkers and Blood-Brain barrier integrity in a natural population of cognitive intact parkinson’s disease patients. CNS Neurol Disord Drug Targets 16. https://doi.org/10.2174/1871527316666161205123123

Long H, Zhang S, Zeng S et al (2022) Interaction of RAGE with α-synuclein fibrils mediates inflammatory response of microglia. Cell Rep 40. https://doi.org/10.1016/j.celrep.2022.111401

Meredith GE, Rademacher DJ (2011) MPTP mouse models of parkinson’s disease: an update. J Parkinsons Dis 1

Myszczynska MA, Ojamies PN, Lacoste AMB et al (2020) Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 16

Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc. https://doi.org/10.1111/j.1532-5415.2005.53221.x

Article  PubMed  Google Scholar 

Noble S, Scheinost D (2020) The Constrained Network-Based Statistic: A New Level of Inference for Neuroimaging. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Nuwer MR (2018) 10–10 electrode system for EEG recording. Clin Neurophysiol 129

Pisani V, Stefani A, Pierantozzi M et al (2012) Increased blood-cerebrospinal fluid transfer of albumin in advanced parkinson’s disease. J Neuroinflammation 9. https://doi.org/10.1186/1742-2094-9-188

Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for parkinson’s disease. Mov Disord 30

Schirinzi T, Sancesario GM, Di Lazzaro G et al (2018) Clinical value of CSF amyloid-beta-42 and Tau proteins in progressive supranuclear palsy. J Neural Transm 125. https://doi.org/10.1007/s00702-018-1893-1

Schober A (2004) Classic toxin-induced animal models of parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318

Sciacca G, Mostile G, Disilvestro I et al (2023) Long-Duration response to levodopa, motor learning, and neuroplasticity in early parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.29344

Article  PubMed  Google Scholar 

Sharma K, Kalakoti P, Nanda A, Sun H (2018) Blood-Brain barrier disruption during neuroinflammation. In: Neuroinflammation. Elsevier, pp 529–539

Tadel F, Baillet S, Mosher JC et al (2011) Brainstorm: A user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011. https://doi.org/10.1155/2011/879716

Takata F, Nakagawa S, Matsumoto J, Dohgu S (2021) Blood-Brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci 15

Tiwari PC, Pal R (2017) The potential role of neuroinflammation and transcription factors in Parkinson disease. Dialogues Clin Neurosci 19. https://doi.org/10.31887/dcns.2017.19.1/rpal

Vogelgesang S, Cascorbi I, Schroeder E et al (2002) Deposition of alzheimer’s β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12 https://doi.org/10.1097/00008571-200210000-00005

Wilhelmus MMM, Bol JGJM, Van Haastert ES et al (2011) Apolipoprotein e and LRP1 increase early in parkinson’s disease pathogenesis. Am J Pathol 179. https://doi.org/10.1016/j.ajpath.2011.07.021

Yassine S, Gschwandtner U, Auffret M et al (2022) Functional brain dysconnectivity in parkinson’s disease: A 5-Year longitudinal study. Mov Disord 37:1444–1453. https://doi.org/10.1002/mds.29026

Article  PubMed  PubMed Central  Google Scholar 

Yassine S, Gschwandtner U, Auffret M et al (2023) Identification of parkinson’s disease subtypes from Resting-State electroencephalography. Movement Disorders https://doi.org/10.1002/mds.29451

Zalesky A, Fornito A, Bullmore ET (2010) Reference manual for NBS connectome (v1.2). NeuroImage 53:1197–1207

Article  PubMed  Google Scholar 

Zappia M, Nicoletti A (2010) The role of the long-duration response to Levodopa in parkinson’s disease. Journal of Neurology

Zhao C, Ling Z, Newman MB et al (2007) TNF-α knockout and Minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis 26. https://doi.org/10.1016/j.nbd.2006.11.012

Comments (0)

No login
gif