Babiloni C, Frisoni GB, Vecchio F et al (2010) Global functional coupling of resting EEG rhythms is related to white-matter lesions along the cholinergic tracts in subjects with amnesic mild cognitive impairment. J Alzheimer’s Disease 19. https://doi.org/10.3233/JAD-2010-1290
Babiloni C, Del Percio C, Lizio R et al (2018) Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to alzheimer’s and parkinson’s diseases. Clin Neurophysiol. 129 https://doi.org/10.1016/j.clinph.2018.01.009
Badrulhisham F, Pogatzki-Zahn E, Segelcke D et al (2024) Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav Immun 115. https://doi.org/10.1016/j.bbi.2023.11.005
Baggio HC, Abos A, Segura B et al (2018) Statistical inference in brain graphs using threshold-free network-based statistics. Hum Brain Mapp 39. https://doi.org/10.1002/hbm.24007
Bohnen NI, Kanel P, Müller MLTM (2018) Molecular imaging of the cholinergic system in parkinson’s disease. In: International Review of Neurobiology
Bovenzi R, Schirinzi T, Conti M et al (2024) A biological characterization of patients with postmenopausal parkinson’s disease. J Neurol in
Bruno M, Bonomi CG, Ricci F et al (2024) Blood–brain barrier permeability is associated with different neuroinflammatory profiles in alzheimer’s disease. Eur J Neurol 31. https://doi.org/10.1111/ene.16095
Carvey PM, Zhao CH, Hendey B et al (2005) 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22. https://doi.org/10.1111/j.1460-9568.2005.04281.x
Chaudhuri KR, Martinez-Martin P, Brown RG et al (2007) The metric properties of a novel non-motor symptoms scale for parkinson’s disease: results from an international pilot study. Mov Disord. https://doi.org/10.1002/mds.21596
Chesselet MF, Richter F, Zhu C et al (2012) A progressive mouse model of parkinson’s disease: the Thy1-aSyn (Line 61) mice. Neurotherapeutics 9
Conti M, Bovenzi R, Garasto E et al (2022a) Brain functional connectivity in de Novo parkinson’s disease patients based on clinical EEG. Front Neurol 13. https://doi.org/10.3389/fneur.2022.844745
Conti M, Stefani A, Bovenzi R et al (2022b) STN-DBS induces acute changes in β-Band cortical functional connectivity in patients with parkinson’s disease. Brain Sci 12. https://doi.org/10.3390/brainsci12121606
Conti M, Guerra A, Pierantozzi M et al (2023) Band-Specific altered cortical connectivity in early parkinson’s disease and its clinical correlates. Mov Disord 1–13. https://doi.org/10.1002/mds.29615
Conti M, Bovenzi R, Palmieri MG et al (2024a) Early effect of onabotulinumtoxin A on EEG-based functional connectivity in patients with chronic migraine: A pilot study. Headache 64:825–837. https://doi.org/10.1111/head.14750
Conti M, D’Onofrio V, Bovenzi R et al (2024b) Cortical functional connectivity changes in the Body-First and Brain-First subtypes of parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.30071
Conti M, Garasto E, Bovenzi R et al (2024c) Insular and limbic abnormal functional connectivity in early-stage parkinson’s disease patients with autonomic dysfunction. Cereb Cortex 34. https://doi.org/10.1093/cercor/bhae270
Conti M, Bovenzi R, Pierantozzi M et al (2025) Sex hormones shape EEG-based functional connectivity in early-stage parkinson’s disease patients. Neuroimage Clin 45. https://doi.org/10.1016/j.nicl.2024.103721
De Micco R, Agosta F, Basaia S et al (2021) Functional connectomics and disease progression in Drug-Naïve parkinson’s disease patients. Mov Disord 36. https://doi.org/10.1002/mds.28541
Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31. https://doi.org/10.1016/j.neuroimage.2006.01.021
Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12. https://doi.org/10.1016/0022-3956(75)90026-6
Goetz CG, Poewe W, Rascol O et al (2004) Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 19. https://doi.org/10.1002/mds.20213
Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement disorder Society-Sponsored revision of the unified parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23. https://doi.org/10.1002/mds.22340
Grech R, Cassar T, Muscat J et al (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:1–33. https://doi.org/10.1186/1743-0003-5-25
Hardmeier M, Hatz F, Bousleiman H et al (2014) Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0108648
Hillmer L, Erhardt EB, Caprihan A et al (2023) Blood-brain barrier disruption measured by albumin index correlates with inflammatory fluid biomarkers. J Cereb Blood Flow Metab 43. https://doi.org/10.1177/0271678X221146127
Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84. https://doi.org/10.1073/pnas.84.16.5976
Hoenen C, Gustin A, Birck C et al (2016) Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the a53t mutant. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0162717
Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13. https://doi.org/10.1016/S0893-6080(00)00026-5
Iadecola C (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96
Jatoi MA, Kamel N, Faye I et al (2016) BEM based solution of forward problem for brain source estimation. IEEE 2015 International Conference on Signal and Image Processing Applications, ICSIPA 2015 - Proceedings 180–185. https://doi.org/10.1109/ICSIPA.2015.7412186
Jwo DJ, Chang WY, Wu IH (2021) Windowing techniques, the Welch method for improvement of power spectrum Estimation. Computers Mater Continua 67. https://doi.org/10.32604/cmc.2021.014752
Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17
Khaliq F, Oberhauser J, Wakhloo D, Mahajani S (2023) Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen Res 18
Khan E, Hasan I, Haque ME (2023) Parkinson’s disease: exploring different animal model systems. Int J Mol Sci 24
Kuan WL, Bennett N, He X et al (2016) α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol 285. https://doi.org/10.1016/j.expneurol.2016.09.003
Lau K, Kotzur R, Richter F (2024) Blood–brain barrier alterations and their impact on parkinson’s disease pathogenesis and therapy. Transl Neurodegener 13
Liguori C, Olivola E, Pierantozzi M et al (2016) Cerebrospinal-fluid alzheimer’s disease biomarkers and Blood-Brain barrier integrity in a natural population of cognitive intact parkinson’s disease patients. CNS Neurol Disord Drug Targets 16. https://doi.org/10.2174/1871527316666161205123123
Long H, Zhang S, Zeng S et al (2022) Interaction of RAGE with α-synuclein fibrils mediates inflammatory response of microglia. Cell Rep 40. https://doi.org/10.1016/j.celrep.2022.111401
Meredith GE, Rademacher DJ (2011) MPTP mouse models of parkinson’s disease: an update. J Parkinsons Dis 1
Myszczynska MA, Ojamies PN, Lacoste AMB et al (2020) Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 16
Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Noble S, Scheinost D (2020) The Constrained Network-Based Statistic: A New Level of Inference for Neuroimaging. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Nuwer MR (2018) 10–10 electrode system for EEG recording. Clin Neurophysiol 129
Pisani V, Stefani A, Pierantozzi M et al (2012) Increased blood-cerebrospinal fluid transfer of albumin in advanced parkinson’s disease. J Neuroinflammation 9. https://doi.org/10.1186/1742-2094-9-188
Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for parkinson’s disease. Mov Disord 30
Schirinzi T, Sancesario GM, Di Lazzaro G et al (2018) Clinical value of CSF amyloid-beta-42 and Tau proteins in progressive supranuclear palsy. J Neural Transm 125. https://doi.org/10.1007/s00702-018-1893-1
Schober A (2004) Classic toxin-induced animal models of parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318
Sciacca G, Mostile G, Disilvestro I et al (2023) Long-Duration response to levodopa, motor learning, and neuroplasticity in early parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.29344
Sharma K, Kalakoti P, Nanda A, Sun H (2018) Blood-Brain barrier disruption during neuroinflammation. In: Neuroinflammation. Elsevier, pp 529–539
Tadel F, Baillet S, Mosher JC et al (2011) Brainstorm: A user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011. https://doi.org/10.1155/2011/879716
Takata F, Nakagawa S, Matsumoto J, Dohgu S (2021) Blood-Brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci 15
Tiwari PC, Pal R (2017) The potential role of neuroinflammation and transcription factors in Parkinson disease. Dialogues Clin Neurosci 19. https://doi.org/10.31887/dcns.2017.19.1/rpal
Vogelgesang S, Cascorbi I, Schroeder E et al (2002) Deposition of alzheimer’s β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12 https://doi.org/10.1097/00008571-200210000-00005
Wilhelmus MMM, Bol JGJM, Van Haastert ES et al (2011) Apolipoprotein e and LRP1 increase early in parkinson’s disease pathogenesis. Am J Pathol 179. https://doi.org/10.1016/j.ajpath.2011.07.021
Yassine S, Gschwandtner U, Auffret M et al (2022) Functional brain dysconnectivity in parkinson’s disease: A 5-Year longitudinal study. Mov Disord 37:1444–1453. https://doi.org/10.1002/mds.29026
Article PubMed PubMed Central Google Scholar
Yassine S, Gschwandtner U, Auffret M et al (2023) Identification of parkinson’s disease subtypes from Resting-State electroencephalography. Movement Disorders https://doi.org/10.1002/mds.29451
Zalesky A, Fornito A, Bullmore ET (2010) Reference manual for NBS connectome (v1.2). NeuroImage 53:1197–1207
Zappia M, Nicoletti A (2010) The role of the long-duration response to Levodopa in parkinson’s disease. Journal of Neurology
Zhao C, Ling Z, Newman MB et al (2007) TNF-α knockout and Minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis 26. https://doi.org/10.1016/j.nbd.2006.11.012
Comments (0)