Motor and non-motor features in progressive supranuclear palsy: the impact of microtubule associated protein tau haplotypes among a Tunisian cohort

Allen M, Kachadoorian M, Quicksall Z et al (2014) Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimers Res Ther. https://doi.org/10.1186/alzrt268

Article  PubMed  PubMed Central  Google Scholar 

Bem J, Brożko N, Chakraborty C et al (2019) Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 593:1654–1674. https://doi.org/10.1002/1873-3468.13502

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ben Jemaa S, Attia Romdhane N, Bahri-Mrabet A et al (2017) An arabic version of the cognitive subscale of the Alzheimer’s disease assessment scale (ADAS-Cog): reliability, validity, and normative data. J Alzheimers Dis JAD 60:11–21. https://doi.org/10.3233/JAD-170222

Article  PubMed  CAS  Google Scholar 

Borroni B, Agosti C, Magnani E et al (2011) Genetic bases of progressive supranuclear palsy: the MAPT tau disease. Curr Med Chem. https://doi.org/10.2174/092986711795933722

Article  PubMed  Google Scholar 

Campagnolo M, Weis L, Fogliano C et al (2023) Clinical, cognitive, and morphometric profiles of progressive supranuclear palsy phenotypes. J Neural Transm 130:97–109. https://doi.org/10.1007/s00702-023-02591-z

Article  PubMed  Google Scholar 

Cersosimo MG, Benarroch EE (2015) Estrogen actions in the nervous system: complexity and clinical implications. Neurology 85:263–273. https://doi.org/10.1212/WNL.0000000000001776

Article  PubMed  CAS  Google Scholar 

Colosimo C, Bak TH, Bologna M, Berardelli A (2014) Fifty years of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 85:938–944. https://doi.org/10.1136/jnnp-2013-305740

Article  PubMed  Google Scholar 

Couto B, Di Luca DG, Antwi J et al (2024) Ethnic background and distribution of clinical phenotypes in patients with probable progressive supranuclear palsy. Parkinsonism Relat Disord 123:106955. https://doi.org/10.1016/j.parkreldis.2024.106955

Article  PubMed  CAS  Google Scholar 

Creed RB, Harris SC, Sridhar S, et al (2024) Tau P301S transgenic mice develop gait and eye movement impairments that mimic progressive supranuclear palsy https://doi.org/10.1101/2024.09.20.614197

Cummings JL, Mega M, Gray K et al (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314. https://doi.org/10.1212/wnl.44.12.2308

Article  PubMed  CAS  Google Scholar 

de Jong S, Chepelev I, Janson E et al (2012) Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner. BMC Genom 13:458. https://doi.org/10.1186/1471-2164-13-458

Article  CAS  Google Scholar 

Doust YV, King AE, Ziebell JM (2021) Implications for microglial sex differences in tau-related neurodegenerative diseases. Neurobiol Aging 105:340–348. https://doi.org/10.1016/j.neurobiolaging.2021.03.010

Article  PubMed  CAS  Google Scholar 

Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626. https://doi.org/10.1212/wnl.55.11.1621

Article  PubMed  CAS  Google Scholar 

Garcia-Cordero I, Vargas-Gonzalez JC, Hadian M et al (2025) Language impairment is associated with faster progression in progressive supranuclear palsy-richardson syndrome. Alzheimers Dement 21:e70485. https://doi.org/10.1002/alz.70485

Article  PubMed  PubMed Central  Google Scholar 

Gerstenecker A, Roberson ED, Schellenberg GD et al (2017) Genetic influences on cognition in progressive supranuclear palsy. Mov Disord off J Mov Disord Soc 32:1764–1771. https://doi.org/10.1002/mds.27196

Article  CAS  Google Scholar 

Goetz CG, Fahn S, Martinez-Martin P, et al (2019) The MDS-sponsored revision of the unified Parkinson’s disease rating scale https://doi.org/10.1002/mds.22340

Grimm M-J, Respondek G, Stamelou M et al (2019) How to apply the Movement Disorder Society criteria for diagnosis of progressive supranuclear palsy. Mov Disord off J Mov Disord Soc 34:1228–1232. https://doi.org/10.1002/mds.27666

Article  Google Scholar 

Heckman MG, Brennan RR, Labbé C et al (2019) Association of MAPT subhaplotypes with risk of progressive supranuclear palsy and severity of tau pathology. JAMA Neurol 76:710–717. https://doi.org/10.1001/jamaneurol.2019.0250

Article  PubMed  PubMed Central  Google Scholar 

Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord off J Mov Disord Soc 32:853–864. https://doi.org/10.1002/mds.26987

Article  Google Scholar 

Hopp SC, Lin Y, Oakley D et al (2018) The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflamm 15:269. https://doi.org/10.1186/s12974-018-1309-z

Article  CAS  Google Scholar 

Ichikawa-Escamilla E, Velasco-Martínez RA, Adalid-Peralta L (2024) Progressive supranuclear palsy syndrome: an overview. IBRO Neurosci Rep 16:598–608. https://doi.org/10.1016/j.ibneur.2024.04.008

Article  PubMed  PubMed Central  Google Scholar 

Iqbal K, Liu F, Gong C-X (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27. https://doi.org/10.1038/nrneurol.2015.225

Article  PubMed  CAS  Google Scholar 

Koga S, Parks A, Kasanuki K et al (2017) Cognitive impairment in progressive supranuclear palsy is associated with tau burden. Mov Disord off J Mov Disord Soc 32:1772–1779. https://doi.org/10.1002/mds.27198

Article  CAS  Google Scholar 

Krzosek P, Madetko N, Migda A et al (2022) Differential diagnosis of rare subtypes of progressive supranuclear palsy and PSP-like syndromes—infrequent manifestations of the most common form of atypical parkinsonism. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2022.804385

Article  PubMed  PubMed Central  Google Scholar 

Lee JS, Ahn JH, Ha JM et al (2023) Subjective cognitive complaints in patients with progressive supranuclear palsy. Front Neurol. https://doi.org/10.3389/fneur.2023.1326571

Article  PubMed  PubMed Central  Google Scholar 

Mahale RR, Krishnan S, Divya KP et al (2022) Gender differences in progressive supranuclear palsy. Acta Neurol Belg 122:357–362. https://doi.org/10.1007/s13760-021-01599-0

Article  PubMed  Google Scholar 

Nasri A, Sghaier I, Gharbi A et al (2022) Role of apolipoprotein E in the clinical profile of atypical Parkinsonian syndromes. Alzheimer Dis Assoc Disord 36:36. https://doi.org/10.1097/WAD.0000000000000479

Article  PubMed  CAS  Google Scholar 

Nasri A, Sghaier I, Neji A et al (2024) Phenotypic spectrum of Progressive Supranuclear Palsy: Clinical study and APOE effect. J Mov Disord. https://doi.org/10.14802/jmd.23178

Article  PubMed  PubMed Central  Google Scholar 

Park HK, Ilango S, Charriez CM et al (2018) Lifetime exposure to estrogen and progressive supranuclear palsy: ENGENE-PSP study. Mov Disord off J Mov Disord Soc 33:468–472. https://doi.org/10.1002/mds.27336

Article  CAS  Google Scholar 

Pascale E, Di Battista ME, Rubino A et al (2016) Genetic architecture of MAPT gene region in Parkinson disease subtypes. Front Cell Neurosci 10:96. https://doi.org/10.3389/fncel.2016.00096

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pedicone C, Weitzman SA, Renton AE, Goate AM (2024) Unraveling the complex role of MAPT-containing H1 and H2 haplotypes in neurodegenerative diseases. Mol Neurodegener 19:43. https://doi.org/10.1186/s13024-024-00731-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rao PN, Li W, Vissers LELM et al (2010) Recurrent inversion events at 17q21.31 microdeletion locus are linked to the MAPT H2 haplotype. Cytogenet Genome Res 129:275–279. https://doi.org/10.1159/000315901

Comments (0)

No login
gif