Astrocyte-Neuron Metabolic Synergies in Neurological Homeostasis and Disease

Lee HG, Wheeler MA, Quintana FJ (2022) Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21:339–358. https://doi.org/10.1038/s41573-022-00390-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hasel P, Liddelow SA (2021) Astrocytes. Curr Biol 31:R326–r7. https://doi.org/10.1016/j.cub.2021.01.056

Article  PubMed  CAS  Google Scholar 

Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108:608–622. https://doi.org/10.1016/j.neuron.2020.08.012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ge WP, Miyawaki A, Gage FH et al (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–380. https://doi.org/10.1038/nature10959

Article  PubMed  PubMed Central  CAS  Google Scholar 

Köhler S, Winkler U, Hirrlinger J (2021) Heterogeneity of astrocytes in grey and white matter. Neurochem Res 46:3–14. https://doi.org/10.1007/s11064-019-02926-x

Article  PubMed  CAS  Google Scholar 

Shan L, Zhang T, Fan K et al (2021) Astrocyte-Neuron signaling in synaptogenesis. Front Cell Dev Biol 9:680301. https://doi.org/10.3389/fcell.2021.680301

Article  PubMed  PubMed Central  Google Scholar 

Fossati G, Matteoli M, Menna E (2020) Astrocytic factors controlling synaptogenesis: A team play. Cells 9:2173. https://doi.org/10.3390/cells9102173

Article  PubMed  PubMed Central  CAS  Google Scholar 

Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

Article  PubMed  CAS  Google Scholar 

Bonvento G, Bolaños JP (2021) Astrocyte-neuron metabolic Cooperation shapes brain activity. Cell Metab 33:1546–1564. https://doi.org/10.1016/j.cmet.2021.07.006

Article  PubMed  CAS  Google Scholar 

Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic Cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/j.cmet.2011.08.016

Article  PubMed  CAS  Google Scholar 

Durkee CA, Araque A (2019) Diversity and specificity of Astrocyte-neuron communication. Neuroscience 396:73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010

Article  PubMed  CAS  Google Scholar 

Verkhratsky A, Parpura V, Vardjan N et al (2019) Physiology of astroglia. Adv Exp Med Biol 1175:45–91. https://doi.org/10.1007/978-981-13-9913-8_3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Al-Jaf S, Soliman AY, El-Yazbi AF et al (2025) Unveiling the interplay: neurovascular coupling, astrocytes and G Protein-Coupled receptors in alzheimer’s disease. ACS Pharmacol Transl Sci 8:271–285. https://doi.org/10.1021/acsptsci.4c00614

Article  PubMed  CAS  Google Scholar 

Drew PJ (2022) Neurovascular coupling: motive unknown. Trends Neurosci 45:809–819. https://doi.org/10.1016/j.tins.2022.08.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Muñoz-Castro C, Serrano-Pozo A (2024) Astrocyte-Neuron interactions in alzheimer’s disease. Adv Neurobiol 39:345–382. https://doi.org/10.1007/978-3-031-64839-7_14

Article  PubMed  Google Scholar 

Sun Y, Zhang H, Zhang X et al (2023) Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of alzheimer’s disease. Redox Biol 62:102690. https://doi.org/10.1016/j.redox.2023.102690

Article  PubMed  PubMed Central  CAS  Google Scholar 

Paumier A, Boisseau S, Jacquier-Sarlin M et al (2022) Astrocyte-neuron interplay is critical for alzheimer’s disease pathogenesis and is rescued by TRPA1 channel Blockade. Brain 145:388–405. https://doi.org/10.1093/brain/awab281

Article  PubMed  Google Scholar 

Garcia R, Zarate S, Srinivasan R (2024) The role of astrocytes in parkinson’s disease: astrocytes in parkinson’s disease. Adv Neurobiol 39:319–343. https://doi.org/10.1007/978-3-031-64839-7_13

Article  PubMed  Google Scholar 

Marchetti B, L’Episcopo F, Morale MC et al (2013) Uncovering novel actors in astrocyte-neuron crosstalk in parkinson’s disease: the Wnt/β-catenin signaling cascade as the common final pathway for neuroprotection and self-repair. Eur J Neurosci 37:1550–1563. https://doi.org/10.1111/ejn.12166

Article  PubMed  PubMed Central  Google Scholar 

Pathak D, Sriram K (2023) Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 16:1169320. https://doi.org/10.3389/fnmol.2023.1169320

Article  PubMed  PubMed Central  CAS  Google Scholar 

Valenza M, Marullo M, Di Paolo E et al (2015) Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in huntington’s disease. Cell Death Differ 22:690–702. https://doi.org/10.1038/cdd.2014.162

Article  PubMed  CAS  Google Scholar 

Ren ZL, Lan X, Cheng JL et al (2025) Astrocyte-neuron metabolic crosstalk in ischaemic stroke. Neurochem Int 185:105954. https://doi.org/10.1016/j.neuint.2025.105954

Article  PubMed  CAS  Google Scholar 

Bhatti MS, Frostig RD (2023) Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. Sci Rep 13:12799. https://doi.org/10.1038/s41598-023-39574-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alle H, Roth A, Geiger JR (2009) Energy-efficient action potentials in hippocampal mossy fibers. Science 325:1405–1408. https://doi.org/10.1126/science.1174331

Article  PubMed  CAS  Google Scholar 

Cheng XT, Huang N, Sheng ZH (2022) Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110:1899–1923. https://doi.org/10.1016/j.neuron.2022.03.015

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mathiisen TM, Lehre KP, Danbolt NC et al (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103. https://doi.org/10.1002/glia.20990

Article  PubMed  Google Scholar 

Laughton JD, Bittar P, Charnay Y et al (2007) Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase. BMC Neurosci 8:35. https://doi.org/10.1186/1471-2202-8-35

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ross JM, Öberg J, Brené S et al (2010) High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci U S A 107:20087–20092. https://doi.org/10.1073/pnas.1008189107

Article 

Comments (0)

No login
gif