Therapeutic Effect of Physical Activity in a Male Wistar Rat Model of Paraquat and Maneb-Induced Parkinson’s Disease

John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of, Cambridge UK Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis, in Parkinson’s Disease: Pathogenesis and Clinical Aspects, John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK, Stoker TB, Greenland JC et al (2018) et John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK, Éd., Codon Publications, pp. 3–26. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1

Kalia LV et, Lang AE (2015) Parkinson’s disease, The Lancet, vol. 386, no 9996, pp. 896–912, août https://doi.org/10.1016/S0140-6736(14)61393-3

Amaral L, Martins M, Côrte-Real M, Outeiro TF, Chaves SR, Rego A (2025) The neurotoxicity of pesticides: implications for parkinson’s disease. Chemosphere 377:144348

Article  CAS  PubMed  Google Scholar 

Atterling Brolin K, Schaeffer E, Kuri A, Rumrich IK, Schumacher Schuh AF, Darweesh SKL et al (2025) Environmental risk factors for parkinson’s disease: A critical review and policy implications. Mov Disord 40(2):204–221

Article  PubMed  Google Scholar 

Schapira AHV, Etiology of Parkinson’s disease, Neurology, vol. 66, no, 10_suppl_4 M (2006) https://doi.org/10.1212/WNL.66.10_suppl_4.S10

Barbeau A, Dallaire L, Buu NT, Poirier J, et, Rucinska E (1985) Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP + and paraquat in Rana pipiens, Life Sciences, vol. 37, no 16, pp. 1529–1538, Oct. https://doi.org/10.1016/0024-3205(85)90185-7

Alami M, Fulop T, Boumezough K, Khalil A, Zerif E, et, Berrougui H, Andreescu S, Henkel R, et, Khelfi A (2024) Éd., Cham: Springer Nature Switzerland, 71–102. doi: https://doi.org/10.1007/978-3-031-69962-7_4

Zhang J et al (2003) Manganese ethylene-bis‐dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction, Journal of Neurochemistry, vol. 84, no 2, pp. 336–346, January. https://doi.org/10.1046/j.1471-4159.2003.01525.x

Anderson CC, Aivazidis S, Kuzyk CL, Jain A, et, Roede JR (2018) Acute Maneb Exposure Significantly Alters Both Glycolysis and Mitochondrial Function in Neuroblastoma Cells, Toxicological Sciences, vol. 165, no 1, pp. 61–73, Sept. https://doi.org/10.1093/toxsci/kfy116

Anderson CC et al (January. 2021) Maneb alters central carbon metabolism and thiol redox status in a toxicant model of parkinson’s disease. Free Radic Biol Med 162:65–76. https://doi.org/10.1016/j.freeradbiomed.2020.11.028

Roede JR, Hansen JM, Go YM, Jones DP (2011) Maneb and Paraquat-Mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system. Toxicol Sci 121(2):368–375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou L, Zhang C, Wang K, Liu X, Wang H, Che Y et al (2017) Paraquat and Maneb co-exposure induce noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation. Toxicology 380:1–10

Article  CAS  PubMed  Google Scholar 

Da Silva S, Da Costa CDL, Naime AA, Santos DB, Farina M, Colle D (2024) Mechanisms mediating the combined toxicity of Paraquat and Maneb in SH-SY5Y neuroblastoma cells. Chem Res Toxicol 37(8):1269–1282

Article  PubMed  PubMed Central  Google Scholar 

Mendivil-Perez M, Felizardo-Otalvaro AA, Jimenez-Del-Rio M, Velez-Pardo C (2023) Cannabidiol protects Dopaminergic-like neurons against Paraquat- and Maneb-Induced cell death through safeguarding DJ-1CYS106 and caspase 3 independently of cannabinoid receptors: relevance in parkinson’s disease. ACS Chem Neurosci 14(11):2159–2171

Article  CAS  PubMed  Google Scholar 

Radak Z, Kumagai S, Taylor AW, Naito H, et, Goto S (2007) Effects of exercise on brain function: role of free radicals, Appl Physiol Nutr Metab, vol. 32, no 5, pp. 942–946, Oct. https://doi.org/10.1139/H07-081

Liu C et al (January. 2023) Exposure to dithiocarbamate fungicide Maneb in vitro and in vivo: neuronal apoptosis and underlying mechanisms. Environ Int 171:107696. https://doi.org/10.1016/j.envint.2022.107696

Chanyachukul T, Yoovathaworn K, Thongsaard W, Chongthammakun S, Navasumrit P, et, Satayavivad J (May 2004) Attenuation of paraquat-induced motor behavior and neurochemical disturbances by l-valine in vivo. Toxicol Lett 150:259–269. https://doi.org/10.1016/j.toxlet.2004.02.007

Reddy PRK, Saravanan J, et, Praveen TK (2019) Evaluation of neuroprotective activity of Melissa officinalis in MPTP model of parkinson’s disease in mice, Rese. Jour Pharm Technol 12(5):2103. https://doi.org/10.5958/0974-360X.2019.00349.4

Article  Google Scholar 

Manivasagam T, Karunanithi K, Annadurai A, Krishnamoorthy M (2011) Elumalai, 1-methyl 4 phenyl 1,2,3,6-tetrahydropyridine is a potent neurotoxin: Gamma-tocopherol recuperate behavior, dopamine, and oxidative stress on parkinsonian mice. Int J Nutr Pharmacol Neurol Dis 1(2):139. https://doi.org/10.4103/2231-0738.84204

Article  CAS  Google Scholar 

Koppal A, R VH, Sivanesan S, Ethirajan S, Vijayaraghavan etR (May 2023) Therapeutic effect of Embelin and Levodopa combination in rotenone induced parkinson’s disease in mice on neurobehavioral changes, RJPT. 2107–2114. https://doi.org/10.52711/0974-360X.2023.00346

Porsolt RD, Anton G, Blavet N, Jalfre etM (1978) Behavioural despair in rats: A new model sensitive to antidepressant treatments, European Journal of Pharmacology, vol. 47, no 4, pp. 379–391, févr. https://doi.org/10.1016/0014-2999(78)90118-8

Ennaceur A et, Meliani K (oct. 1992) A new one-trial test for Neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory. Behav Brain Res 51(1):83–92. https://doi.org/10.1016/S0166-4328(05)80315-8

Draper HH et, Hadley M (1990) [43] malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, vol 186. Elsevier, pp 421–431. https://doi.org/10.1016/0076-6879(90)86135-I

Beauchamp C (1971) et I. Fridovich, Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, vol. 44, no 1, pp. 276–287, Nov. https://doi.org/10.1016/0003-2697(71)90370-8

Aebi H (1984) [13] catalase in vitro. Methods in enzymology, vol 105. Elsevier, pp 121–126. doi: https://doi.org/10.1016/S0076-6879(84)05016-3.

Mahalakshmi B, Maurya N, Lee S-D (2020) et V. Bharath Kumar, Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration, IJMS, vol. 21, no 16, p. 5895, août https://doi.org/10.3390/ijms21165895

Uversky VN (2004) Neurotoxicant-induced animal models of parkinson’s disease: Understanding the role of rotenone, maneb, and Paraquat in neurodegeneration. Cell Tissue Res 318(1):225–241. https://doi.org/10.1007/s00441-004-0937-z

Article  CAS  PubMed  Google Scholar 

Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017) Treadmill exercise decreases oxidative stress in the brains of 6-hydroxydopamine-induced parkinson’s disease rats. Neurosci Lett 642:2027. https://doi.org/10.1016/j.neulet.2017.01.008

Article  CAS  Google Scholar 

Liu Y, Yan T, Chu JM, Chen Y, Dunnett S, Hu Y et al (2022) Exercise-induced neuroprotection of the nigrostriatal dopaminergic system in early parkinson’s disease: the role of oxidative stress. Brain Behav Immun 102:222–235. https://doi.org/10.1016/j.bbi.2022.01.005

Article  CAS  Google Scholar 

Radak Z, Kumagai S, Taylor AW, Naito H, Goto S (2007) Effects of exercise on brain function: role of free radicals. Appl Physiol Nutr Metab 32(5):942–946. https://doi.org/10.1139/H07-081

Article  CAS  PubMed  Google Scholar 

Tan SKH, Hartung H, Walter BL (2021) The neurobiology of anxiety in parkinson’s disease: dopaminergic, serotonergic and noradrenergic pathways. Neurosci Biobehav Rev 127:376–389. https://doi.org/10.1016/j.neubiorev.2021.04.020

Article  Google Scholar 

Carey G, Görmezoğlu M, de Jong JJA, Hofman PAM, Backes WH, Dujardin K et al (2021) Neuroimaging of anxiety in parkinson’s disease: A systematic review. Mov Disord 36(2):327–339

Article  PubMed  Google Scholar 

Hou L et al (2017) Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation, Toxicology, vol. 380, pp. 1–10, avr. https://doi.org/10.1016/j.tox.2017.02.009

Abuoaf R et al (2023) The effect of physical exercise on anxiety in people with parkinson’s disease: A systematic review of randomized control trials, NRE, vol. 52, no 3, pp. 387–402, avr. https://doi.org/10.3233/NRE-220264

Chevallier CJ Les médicaments dopaminergiques: de la maladie de Parkinson aux traitements des addictions

Lippi G, Mattiuzzi C, et, Sanchis-Gomar F (2020) Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans, Journal of Sport and Health Science, vol. 9, no 1, pp. 74–81, January. https://doi.org/10.1016/j.jshs.2019.07.012

Ding W, Lin H, Hong X, Ji D, et, Wu F (2020) Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson’s disease, Toxicology, vol. 436, p. 152437, avr. https://doi.org/10.1016/j.tox.2020.152437

Militello R, Luti S, Gamberi T, Pellegrino A, Modesti A, et, Modesti PA (2024) Physical Activity and Oxidative Stress in Aging, Antioxidants, vol. 13, no 5, p. 557, mai https://doi.org/10.3390/antiox13050557

Liou H-H, Chen R-C, Tsai Y-F, Chen W-P, Chang Y-C, Tsai etM-C (1996) Effects of Paraquat on the Substantia Nigra of the Wistar Rats: Neurochemical, Histological, and Behavioral Studies, Toxicology and Applied Pharmacology, vol. 137, no 1, pp. 34–41, mars https://doi.org/10.1006/taap1996.0054

Liou H-H, Chen R-C, Chen TH-H, Tsai Y-F, Tsai etM-C (2001) Attenuation of Paraquat-Induced Dopaminergic Toxicity on the Substantia Nigra by (–)-Deprenyl in Vivo, Toxicology and Applied Pharmacology, vol. 172, no 1, pp. 37–43, April. https://doi.org/10.1006/taap.2001.9130

Chaouhan HS et al (January. 2022) Calycosin alleviates Paraquat-Induced neurodegeneration by improving mitochondrial functions and regulating autophagy in a drosophila model of parkinson’s disease, antioxidants. 11(2). https://doi.org/10.3390/antiox11020222

Bacanoiu MV, Danoiu M, Rusu L, et, Marin MI (2023) New Directions to Approach Oxidative Stress Related to Physical Activity and Nutraceuticals in Normal Aging and Neurodegenerative Aging, Antioxidants, vol. 12, no 5, p. 1008, avr. https://doi.org/10.3390/antiox12051008

Nhu NT, Cheng YJ, Lee SD (2021) Effects of treadmill exercise on neural mitochondrial functions in parkinson’s disease: A systematic review of animal studies. Biomedicines 9(8):1011

Article  PubMed  PubMed Central  Google Scholar 

Lee MJC et al (2024) Delineating the contribution of ageing and physical activity to changes in mitochondrial characteristics across the lifespan. Mol Aspects Med 97:101272

Article  CAS  PubMed  Google Scholar 

Pinho RA et al (2024) Physical exercise-mediated neuroprotective mechanisms in parkinson’s disease, alzheimer’s disease, and epilepsy. Braz J Med Biol Res 57:e14094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farì G et al (2021) The effect of physical exercise on cognitive impairment in neurodegenerative disease: from pathophysiology to clinical and rehabilitative aspects. Int J Mol Sci 22(21):11632

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif