da Silva-Araújo ER, Toscano AE, Silva PBP et al (2024) Effects of deficiency or supplementation of riboflavin on energy metabolism: a systematic review with preclinical studies. Nutr Rev. https://doi.org/10.1093/nutrit/nuae041
Lienhart W-D, Gudipati V, Macheroux P (2013) The human flavoproteome. Arch Biochem Biophys 535:150–162. https://doi.org/10.1016/j.abb.2013.02.015
Article PubMed PubMed Central CAS Google Scholar
Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17. https://doi.org/10.1111/j.1432-1033.1989.tb14688.x
Article PubMed CAS Google Scholar
Hashmi-Hill MP, Sandock K, Bates JN et al (2007) Flavin adenine dinucleotide may release preformed stores of nitrosyl factors from the vascular endothelium of conscious rats. J Cardiovasc Pharmacol 50:142–154. https://doi.org/10.1097/FJC.0b013e31805c1646
Article PubMed CAS Google Scholar
Suwannasom N, Kao I, Pruß A et al (2020) Riboflavin: the health benefits of a forgotten natural vitamin. Int J Mol Sci. https://doi.org/10.3390/ijms21030950
Article PubMed PubMed Central Google Scholar
da Silva-Araújo ER, Manhães-de-Castro R, Pontes PB et al (2023) Effects of riboflavin in the treatment of brain damage caused by oxygen deprivation: an integrative systematic review. Nutr Neurosci. https://doi.org/10.1080/1028415X.2023.2288387
Christensen S (1969) Studies on riboflavin metabolism in the rat. I. Urinary and faecal excretion after oral administration of riboflavin-5’-phosphate. Acta Pharmacol Toxicol (Copenh) 27:27–33. https://doi.org/10.1111/j.1600-0773.1969.tb00479.x
Article PubMed CAS Google Scholar
Christensen S (1969) Studies on riboflavin metabolism in the rat. IV. Riboflavin elimination after exclusion of the portal circulation. Acta Pharmacol Toxicol (Copenh) 27:49–55. https://doi.org/10.1111/j.1600-0773.1969.tb00482.x
Article PubMed CAS Google Scholar
Chawla J, Kvarnberg D (2014) Hydrosoluble vitamins
Giza CC, Prins ML (2006) Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Dev Neurosci 28:364–379. https://doi.org/10.1159/000094163
Article PubMed CAS Google Scholar
da Conceição Pereira S, Manhães-de-Castro R, Visco DB et al (2021) Locomotion is impacted differently according to the perinatal brain injury model: meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods 360:109250. https://doi.org/10.1016/j.jneumeth.2021.109250
Visco DB, Manhães de Castro R, da Silva MM et al (2023) Neonatal Kaempferol exposure attenuates gait and strength deficits and prevents altered muscle phenotype in a rat model of cerebral palsy. Int J Dev Neurosci Off J Int Soc Dev Neurosci 83:80–97. https://doi.org/10.1002/jdn.10239
Cappellini G, Sylos-Labini F, Dewolf AH et al (2020) Maturation of the locomotor circuitry in children with cerebral palsy. Front Bioeng Biotechnol 8:998. https://doi.org/10.3389/fbioe.2020.00998
Article PubMed PubMed Central Google Scholar
Pontes PB, Toscano AE, Lacerda DC et al (2023) Effectiveness of polyphenols on perinatal brain damage: a systematic review of preclinical studies. Foods. https://doi.org/10.3390/foods12122278
Article PubMed PubMed Central Google Scholar
Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H (2019) Can neonatal systemic inflammation and hypoxia yield a cerebral Palsy-like phenotype in periadolescent mice?? Mol Neurobiol 56:6883–6900. https://doi.org/10.1007/s12035-019-1548-8
Article PubMed PubMed Central CAS Google Scholar
Pereira Sda, Benoit C, de Aguiar Junior B FCA, et al (2021) Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle 12:2122–2133. https://doi.org/10.1002/jcsm.12819
Article PubMed PubMed Central Google Scholar
Leaw B, Nair S, Lim R et al (2017) Mitochondria, bioenergetics and excitotoxicity: new therapeutic targets in perinatal brain injury. Front Cell Neurosci 11:199. https://doi.org/10.3389/fncel.2017.00199
Article PubMed PubMed Central CAS Google Scholar
Peterson TC, Maass WR, Anderson JR et al (2015) A behavioral and histological comparison of fluid percussion injury and controlled cortical impact injury to the rat sensorimotor cortex. Behav Brain Res 294:254–263. https://doi.org/10.1016/j.bbr.2015.08.007
Article PubMed PubMed Central Google Scholar
Lavrick SY, Shprakh VV, Domitrak SV, Borisov AS (2016) [Cytoflavin in the treatment of preschool and early school age children with the consequences of perinatal hypoxic brain damages]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 116:34–37. https://doi.org/10.17116/jnevro201611610134-37
Visco DB, Manhães-de-Castro R, da Silva MM et al (2022) Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci (1):22. https://doi.org/10.1080/1028415X.2022.2156034
da Silva-Araújo ER, Toscano AE, Pontes PB et al (2024) Neonatal high-dose riboflavin treatment channels energy expenditure towards sensorimotor and somatic development and reduces rodent growth and weight gain by modulating NRF-1 in the hypothalamus. Physiol Behav 287:114693. https://doi.org/10.1016/j.physbeh.2024.114693
Article PubMed CAS Google Scholar
De Nardo MC, Mario C, Di, Laccetta G et al (2022) Enteral and parenteral energy intake and neurodevelopment in preterm infants: a systematic review. Nutrition 97:111572. https://doi.org/10.1016/j.nut.2021.111572
De Nardo MC, Petrella C, Di Chiara M et al (2022) Early nutritional intake influences the serum levels of nerve growth factor (NGF) and brain-derived neurotrophic factor in preterm newborns. Front Neurol 13:988101. https://doi.org/10.3389/fneur.2022.988101
Article PubMed PubMed Central Google Scholar
de Souza JA, da Silva MC, Costa FCO et al (2020) Early life stress induced by maternal separation during lactation alters the eating behavior and serotonin system in middle-aged rat female offspring. Pharmacol Biochem Behav 192:172908. https://doi.org/10.1016/j.pbb.2020.172908
Article PubMed CAS Google Scholar
Ullegaddi R, Powers HJ, Gariballa SE (2006) Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: a randomized controlled trial. J Parenter Enteral Nutr 30:108–114
Kennedy DO (2016) B vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients 8:68. https://doi.org/10.3390/nu8020068
Article PubMed PubMed Central CAS Google Scholar
Peraza AV, Guzmán DC, Brizuela NO et al (2018) Riboflavin and pyridoxine restore dopamine levels and reduce oxidative stress in brain of rats. BMC Neurosci 19:71. https://doi.org/10.1186/s12868-018-0474-4
Article PubMed PubMed Central CAS Google Scholar
Bian X, Gao W, Wang Y et al (2019) Riboflavin deficiency affects lipid metabolism partly by reducing Apolipoprotein B100 synthesis in rats. J Nutr Biochem 70:75–81. https://doi.org/10.1016/j.jnutbio.2019.04.011
Article PubMed CAS Google Scholar
Tang N, Hong F, Hao W et al (2022) Riboflavin ameliorates mitochondrial dysfunction via the AMPK/PGC1α/HO–1 signaling pathway and attenuates carbon tetrachloride–induced liver fibrosis in rats. Exp Ther Med 24:608. https://doi.org/10.3892/etm.2022.11545
Comments (0)