Riboflavin (Vitamin B2) Accumulation Modulates Neuronal Cellular Homeostasis in Typical Brain Development and Cerebral Palsy

da Silva-Araújo ER, Toscano AE, Silva PBP et al (2024) Effects of deficiency or supplementation of riboflavin on energy metabolism: a systematic review with preclinical studies. Nutr Rev. https://doi.org/10.1093/nutrit/nuae041

Article  Google Scholar 

Lienhart W-D, Gudipati V, Macheroux P (2013) The human flavoproteome. Arch Biochem Biophys 535:150–162. https://doi.org/10.1016/j.abb.2013.02.015

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17. https://doi.org/10.1111/j.1432-1033.1989.tb14688.x

Article  PubMed  CAS  Google Scholar 

Hashmi-Hill MP, Sandock K, Bates JN et al (2007) Flavin adenine dinucleotide may release preformed stores of nitrosyl factors from the vascular endothelium of conscious rats. J Cardiovasc Pharmacol 50:142–154. https://doi.org/10.1097/FJC.0b013e31805c1646

Article  PubMed  CAS  Google Scholar 

Suwannasom N, Kao I, Pruß A et al (2020) Riboflavin: the health benefits of a forgotten natural vitamin. Int J Mol Sci. https://doi.org/10.3390/ijms21030950

Article  PubMed  PubMed Central  Google Scholar 

da Silva-Araújo ER, Manhães-de-Castro R, Pontes PB et al (2023) Effects of riboflavin in the treatment of brain damage caused by oxygen deprivation: an integrative systematic review. Nutr Neurosci. https://doi.org/10.1080/1028415X.2023.2288387

Article  PubMed  Google Scholar 

Christensen S (1969) Studies on riboflavin metabolism in the rat. I. Urinary and faecal excretion after oral administration of riboflavin-5’-phosphate. Acta Pharmacol Toxicol (Copenh) 27:27–33. https://doi.org/10.1111/j.1600-0773.1969.tb00479.x

Article  PubMed  CAS  Google Scholar 

Christensen S (1969) Studies on riboflavin metabolism in the rat. IV. Riboflavin elimination after exclusion of the portal circulation. Acta Pharmacol Toxicol (Copenh) 27:49–55. https://doi.org/10.1111/j.1600-0773.1969.tb00482.x

Article  PubMed  CAS  Google Scholar 

Chawla J, Kvarnberg D (2014) Hydrosoluble vitamins

Giza CC, Prins ML (2006) Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Dev Neurosci 28:364–379. https://doi.org/10.1159/000094163

Article  PubMed  CAS  Google Scholar 

da Conceição Pereira S, Manhães-de-Castro R, Visco DB et al (2021) Locomotion is impacted differently according to the perinatal brain injury model: meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods 360:109250. https://doi.org/10.1016/j.jneumeth.2021.109250

Article  PubMed  Google Scholar 

Visco DB, Manhães de Castro R, da Silva MM et al (2023) Neonatal Kaempferol exposure attenuates gait and strength deficits and prevents altered muscle phenotype in a rat model of cerebral palsy. Int J Dev Neurosci Off J Int Soc Dev Neurosci 83:80–97. https://doi.org/10.1002/jdn.10239

Article  CAS  Google Scholar 

Cappellini G, Sylos-Labini F, Dewolf AH et al (2020) Maturation of the locomotor circuitry in children with cerebral palsy. Front Bioeng Biotechnol 8:998. https://doi.org/10.3389/fbioe.2020.00998

Article  PubMed  PubMed Central  Google Scholar 

Pontes PB, Toscano AE, Lacerda DC et al (2023) Effectiveness of polyphenols on perinatal brain damage: a systematic review of preclinical studies. Foods. https://doi.org/10.3390/foods12122278

Article  PubMed  PubMed Central  Google Scholar 

Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H (2019) Can neonatal systemic inflammation and hypoxia yield a cerebral Palsy-like phenotype in periadolescent mice?? Mol Neurobiol 56:6883–6900. https://doi.org/10.1007/s12035-019-1548-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pereira Sda, Benoit C, de Aguiar Junior B FCA, et al (2021) Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle 12:2122–2133. https://doi.org/10.1002/jcsm.12819

Article  PubMed  PubMed Central  Google Scholar 

Leaw B, Nair S, Lim R et al (2017) Mitochondria, bioenergetics and excitotoxicity: new therapeutic targets in perinatal brain injury. Front Cell Neurosci 11:199. https://doi.org/10.3389/fncel.2017.00199

Article  PubMed  PubMed Central  CAS  Google Scholar 

Peterson TC, Maass WR, Anderson JR et al (2015) A behavioral and histological comparison of fluid percussion injury and controlled cortical impact injury to the rat sensorimotor cortex. Behav Brain Res 294:254–263. https://doi.org/10.1016/j.bbr.2015.08.007

Article  PubMed  PubMed Central  Google Scholar 

Lavrick SY, Shprakh VV, Domitrak SV, Borisov AS (2016) [Cytoflavin in the treatment of preschool and early school age children with the consequences of perinatal hypoxic brain damages]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 116:34–37. https://doi.org/10.17116/jnevro201611610134-37

Article  Google Scholar 

Visco DB, Manhães-de-Castro R, da Silva MM et al (2022) Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci (1):22. https://doi.org/10.1080/1028415X.2022.2156034

Article  PubMed  Google Scholar 

da Silva-Araújo ER, Toscano AE, Pontes PB et al (2024) Neonatal high-dose riboflavin treatment channels energy expenditure towards sensorimotor and somatic development and reduces rodent growth and weight gain by modulating NRF-1 in the hypothalamus. Physiol Behav 287:114693. https://doi.org/10.1016/j.physbeh.2024.114693

Article  PubMed  CAS  Google Scholar 

De Nardo MC, Mario C, Di, Laccetta G et al (2022) Enteral and parenteral energy intake and neurodevelopment in preterm infants: a systematic review. Nutrition 97:111572. https://doi.org/10.1016/j.nut.2021.111572

Article  PubMed  Google Scholar 

De Nardo MC, Petrella C, Di Chiara M et al (2022) Early nutritional intake influences the serum levels of nerve growth factor (NGF) and brain-derived neurotrophic factor in preterm newborns. Front Neurol 13:988101. https://doi.org/10.3389/fneur.2022.988101

Article  PubMed  PubMed Central  Google Scholar 

de Souza JA, da Silva MC, Costa FCO et al (2020) Early life stress induced by maternal separation during lactation alters the eating behavior and serotonin system in middle-aged rat female offspring. Pharmacol Biochem Behav 192:172908. https://doi.org/10.1016/j.pbb.2020.172908

Article  PubMed  CAS  Google Scholar 

Ullegaddi R, Powers HJ, Gariballa SE (2006) Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: a randomized controlled trial. J Parenter Enteral Nutr 30:108–114

Article  CAS  Google Scholar 

Kennedy DO (2016) B vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients 8:68. https://doi.org/10.3390/nu8020068

Article  PubMed  PubMed Central  CAS  Google Scholar 

Peraza AV, Guzmán DC, Brizuela NO et al (2018) Riboflavin and pyridoxine restore dopamine levels and reduce oxidative stress in brain of rats. BMC Neurosci 19:71. https://doi.org/10.1186/s12868-018-0474-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bian X, Gao W, Wang Y et al (2019) Riboflavin deficiency affects lipid metabolism partly by reducing Apolipoprotein B100 synthesis in rats. J Nutr Biochem 70:75–81. https://doi.org/10.1016/j.jnutbio.2019.04.011

Article  PubMed  CAS  Google Scholar 

Tang N, Hong F, Hao W et al (2022) Riboflavin ameliorates mitochondrial dysfunction via the AMPK/PGC1α/HO–1 signaling pathway and attenuates carbon tetrachloride–induced liver fibrosis in rats. Exp Ther Med 24:608. https://doi.org/10.3892/etm.2022.11545

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif