Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360:1233–42. https://doi.org/10.1016/S0140-6736(02)11274-8.
Article CAS PubMed Google Scholar
Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, et al. Health effects of air pollution. J Allergy Clin Immunol. 2004;114:1116–23. https://doi.org/10.1016/j.jaci.2004.08.030.
Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709–42. https://doi.org/10.1080/10473289.2006.10464485.
Article CAS PubMed Google Scholar
Siroux V, Agier L, Slama R. The exposome concept: a challenge and a potential driver for environmental health research. Eur Respir Rev. 2016;25:124–9. https://doi.org/10.1183/16000617.0034-2016.
Article PubMed PubMed Central Google Scholar
Khomenko S, Cirach M, Barrera-Gómez J, Pereira-Barboza E, Iungman T, Mueller N, et al. Impact of road traffic noise on annoyance and preventable mortality in European cities: a health impact assessment. Environ Int. 2022;162:107160 https://doi.org/10.1016/j.envint.2022.107160.
Vienneau D, Wicki B, Flückiger B, Schäffer B, Wunderli JM, Röösli M. Long-term exposure to transportation noise and diabetes mellitus mortality: a national cohort study and updated meta-analysis. Environ Health. 2024;23:46. https://doi.org/10.1186/s12940-024-01084-0.
Article CAS PubMed PubMed Central Google Scholar
Wang R, Helbich M, Yao Y, Zhang J, Liu P, Yuan Y, et al. Urban greenery and mental wellbeing in adults: cross-sectional mediation analyses on multiple pathways across different greenery measures. Environ Res. 2019;176:108535 https://doi.org/10.1016/j.envres.2019.108535.
Article CAS PubMed Google Scholar
Dötsch-Klerk M, PMM Goossens W, Meijer GW, van het Hof KH. Reducing salt in food; setting product-specific criteria aiming at a salt intake of 5 g per day. Eur J Clin Nutr. 2015;69:799–804. https://doi.org/10.1038/ejcn.2015.5.
Article CAS PubMed PubMed Central Google Scholar
Pineda E, Poelman MP, Aaspõllu A, Bica M, Bouzas C, Carrano E, et al. Policy implementation and priorities to create healthy food environments using the Healthy Food Environment Policy Index (Food-EPI): a pooled level analysis across eleven European countries. Lancet Reg Health Eur. 2022;23:100522 https://doi.org/10.1016/j.lanepe.2022.100522.
Article PubMed PubMed Central Google Scholar
Hankey S, Lindsey G, Marshall JD. Population-level exposure to particulate air pollution during active travel: planning for low-exposure, health-promoting cities. Environ Health Perspect. 2017;125:527–34. https://doi.org/10.1289/ehp442.
Article CAS PubMed Google Scholar
Almonacid Garrido MC, Jiménez Navarro P, Peinador Asensio J, Villanueva Suárez MJ, Tenorio Sanz MD. Tap water lead levels in madrid (Spain): degree of compliance and health risk assessment. Expo Health. 2020;13:207–18. https://doi.org/10.1007/s12403-020-00374-5.
Hansen R, Buizer M, Buijs A, Pauleit S, Mattijssen T, Fors H, et al. Transformative or piecemeal? Changes in green space planning and governance in eleven European cities. Eur Plan Stud. 2022;31:2401–24. https://doi.org/10.1080/09654313.2022.2139594.
Bai Y, Zhang Y, Zotova O, Pineo H, Siri J, Liang L, et al. Healthy cities initiative in China: progress, challenges, and the way forward. Lancet Reg Health-W Pac. 2022;27:100539 https://doi.org/10.1016/j.lanwpc.2022.100539.
Rajagopalan S, Ramaswami A, Bhatnagar A, Brook RD, Fenton M, Gardner C, et al. Toward heart-healthy and sustainable cities: a policy statement from the American Heart Association. Circulation. 2024;149:e1067–e1089. https://doi.org/10.1161/cir.0000000000001217.
Article PubMed PubMed Central Google Scholar
Duan N. Models for human exposure to air pollution. Environ Int. 1982;8:305–9. https://doi.org/10.1016/0160-4120(82)90041-1.
Mölter A, Lindley S, de Vocht F, Agius R, Kerry G, Johnson K, et al. Performance of a microenviromental model for estimating personal NO2 exposure in children. Atmos Environ. 2012;51:225–33. https://doi.org/10.1016/j.atmosenv.2012.01.030.
Steinle S, Reis S, Sabel CE. Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ. 2013;443:184–93. https://doi.org/10.1016/j.scitotenv.2012.10.098.
Article CAS PubMed Google Scholar
Klous G, Smit LAM, Freidl GS, Borlée F, van der Hoek W, IJzermans CJ, et al. Pneumonia risk of people living close to goat and poultry farms – taking GPS-derived mobility patterns into account. Environ Int. 2018;115:150–60. https://doi.org/10.1016/j.envint.2018.03.020.
OpenAQ: Air quality data platform website. Accessed 25 March 2025. Available from: https://openaq.org/.
Beukes JP, Venter AD, Josipovic M, Van Zyl PG, Vakkari V, Jaars K, et al. Automated continuous air monitoring. In: Forbes PBC, editor. Monitoring of air pollutants - sampling, sample preparation and analytical techniques. Elsevier; 2015. p. 183–208.
Poom A, Willberg E, Toivonen T. Environmental exposure during travel: a research review and suggestions forward. Health Place. 2021;70:102584 https://doi.org/10.1016/j.healthplace.2021.102584.
Strak M, Janssen N, Beelen R, Schmitz O, Vaartjes I, Karssenberg D, et al. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ Int. 2017;108:228–36. https://doi.org/10.1016/j.envint.2017.08.017.
Article CAS PubMed Google Scholar
Bukalasa JS, Brunekreef B, Brouwer M, Koppelman GH, Wijga AH, Huss A, et al. Associations of residential exposure to agricultural pesticides with asthma prevalence in adolescence: the PIAMA birth cohort. Environ Int. 2018;121:435–42. https://doi.org/10.1016/j.envint.2018.09.029.
Article CAS PubMed Google Scholar
Stafoggia M, Oftedal B, Chen J, Rodopoulou S, Renzi M, Atkinson RW, et al. Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project. Lancet Planet Health. 2022;6:e9–e18. https://doi.org/10.1016/s2542-5196(21)00277-1.
Park YM, Kwan MP. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place. 2017;43:85–94. https://doi.org/10.1016/j.healthplace.2016.10.002.
Helbich M. Toward dynamic urban environmental exposure assessments in mental health research. Environ Res. 2018;161:129–35. https://doi.org/10.1016/j.envres.2017.11.006.
Article CAS PubMed PubMed Central Google Scholar
Ntarladima AM, Karssenberg D, Vaartjes I, Grobbee DE, Schmitz O, Lu M, et al. A comparison of associations with childhood lung function between air pollution exposure assessment methods with and without accounting for time-activity patterns. Environ Res. 2021;202:111710 https://doi.org/10.1016/j.envres.2021.111710.
Article CAS PubMed Google Scholar
Lu M, Schmitz O, de Hoogh K, Hoek G, Li Q, Karssenberg D. Integrating statistical and agent-based modelling for activity-based ambient air pollution exposure assessment. Environ Model Softw. 2022;158:105555 https://doi.org/10.1016/j.envsoft.2022.105555.
Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, et al. A standard protocol for describing individual-based and agent-based models. Ecol Model. 2006;198:115–26. https://doi.org/10.1016/j.ecolmodel.2006.04.023.
An L. Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol Model. 2012;229:25–36. https://doi.org/10.1016/j.ecolmodel.2011.07.010.
Heppenstall AJ, Crooks AT, See LM, Batty M, editors. Agent-based models of geographical systems. Netherlands: Springer; 2012.
Beckx C, Panis LI, Arentze T, Janssens D, Torfs R, Broekx S, et al. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban area. Environ Impact Asses Rev. 2009;29:179–85. https://doi.org/10.1016/j.eiar.2008.10.001.
Comments (0)