Identification of RAPGEF3 as the therapeutic vulnerability of basal-subtype lung squamous cell carcinoma

Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75:10–45.

PubMed  PubMed Central  Google Scholar 

Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85:8.

PubMed  PubMed Central  Google Scholar 

Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell. 2022;40:1279–93.

CAS  PubMed  Google Scholar 

Wilkerson MD, Yin X, Hoadley KA, Liu Y, Hayward MC, Cabanski CR, et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res. 2010;16:4864–75.

CAS  PubMed  PubMed Central  Google Scholar 

Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S. et al. The role of Epac in cancer Progression. Int J Mol Sci.2020;21:6489.

PubMed  PubMed Central  Google Scholar 

Wang H, Tang S, Wu Q, He Y, Zhu W, Xie X, et al. Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target. Natl Sci Rev. 2024;11:nwae392.

PubMed  PubMed Central  Google Scholar 

Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, et al. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell. 2024;42:413–428.e417.

CAS  PubMed  Google Scholar 

Hoshida Y. Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS One. 2010;5:e15543.

PubMed  PubMed Central  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

CAS  PubMed  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.

CAS  PubMed  PubMed Central  Google Scholar 

Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A J Integr Biol. 2012;16:284–7.

CAS  Google Scholar 

Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol. 2023;24:857–75.

CAS  PubMed  Google Scholar 

Mutvei AP, Nagiec MJ, Hamann JC, Kim SG, Vincent CT, Blenis J. Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nat Commun. 2020;11:1416.

CAS  PubMed  PubMed Central  Google Scholar 

Sunilkumar S, Kimball SR, Dennis MD. Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal. 2021;84:110010.

CAS  PubMed  PubMed Central  Google Scholar 

Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

CAS  Google Scholar 

Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, et al. Epac as a tractable therapeutic target. Eur J Pharm. 2023;945:175645.

CAS  Google Scholar 

Zhu Y, Chen H, Boulton S, Mei F, Ye N, Melacini G, et al. Biochemical and pharmacological characterizations of ESI-09 based EPAC inhibitors: defining the ESI-09 “Therapeutic Window”. Sci Rep. 2015;5:9344.

CAS  PubMed  PubMed Central  Google Scholar 

Awasthi A, Samarakoon A, Chu H, Kamalakannan R, Quilliam LA, Chrzanowska-Wodnicka M, et al. Rap1b facilitates NK cell functions via IQGAP1-mediated signalosomes. J Exp Med. 2010;207:1923–38.

CAS  PubMed  PubMed Central  Google Scholar 

Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol. 2002;3:251–8.

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif