Integrating multimodal data to predict the progression of hormone-sensitive prostate cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

Moris L, Cumberbatch MG, Van den Broeck T, Gandaglia G, Fossati N, Kelly B, Pal R, Briers E, Cornford P, De Santis M, Fanti S, Gillessen S, Grummet JP, Henry AM, Lam TBL, Lardas M, Liew M, Mason MD, Omar MI, Rouvière O, Schoots IG, Tilki D, van den Bergh RCN, van Der Kwast TH, van Der Poel HG, Willemse PM, Yuan CY, Konety B, Dorff T, Jain S, Mottet N, Wiegel T. Benefits and risks of primary treatments for High-risk localized and locally advanced prostate cancer: an international multidisciplinary systematic review. Eur Urol. 2020;77(5):614–27.

Article  CAS  PubMed  Google Scholar 

Harris WP, Mostaghel EA, Nelson PS, Montgomery B. Androgen deprivation therapy: progress in Understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol. 2009;6(2):76–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hussain M, Goldman B, Tangen C, et al. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: data from Southwest oncology group trials 9346 (Intergroup study 0162) and 9916. J Clin Oncol. 2009;27:2450–6.

Article  PubMed  PubMed Central  Google Scholar 

Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373:737–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, Zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan C, He Y, Wang H, Yu Y, Li L, Huang L, Lyu M, Ge W, Yang B, Sun Y, Guo T, Liu Z. Identifying patients with rapid progression from Hormone-Sensitive to Castration-Resistant prostate cancer: A retrospective study. Mol Cell Proteom. 2023;22(9):100613.

Article  CAS  Google Scholar 

Chaddad A, Kucharczyk MJ, Niazi T. Multimodal radiomic features for the predicting Gleason score of prostate Cancer. Cancers (Basel). 2018;10(8):249.

Article  PubMed  Google Scholar 

Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting Gleason score of prostate Cancer patients using radiomic analysis. Front Oncol. 2018;8:630.

Article  PubMed  PubMed Central  Google Scholar 

Gugliandolo SG, Pepa M, Isaksson LJ, Marvaso G, Raimondi S, Botta F, Gandini S, Ciardo D, Volpe S, Riva G, Rojas DP, Zerini D, Pricolo P, Alessi S, Petralia G, Summers PE, Mistretta FA, Luzzago S, Cattani F, De Cobelli O, Cassano E, Cremonesi M, Bellomi M, Orecchia R, Jereczek-Fossa BA. MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase II trial on ultra-hypofractionated radiotherapy (AIRC IG-13218). Eur Radiol. 2021;31(2):716–28.

Article  PubMed  Google Scholar 

Papp L, Spielvogel CP, Grubmüller B, Grahovac M, Krajnc D, Ecsedi B, Sareshgi RAM, Mohamad D, Hamboeck M, Rausch I, Mitterhauser M, Wadsak W, Haug AR, Kenner L, Mazal P, Susani M, Hartenbach S, Baltzer P, Helbich TH, Kramer G, Shariat SF, Beyer T, Hartenbach M, Hacker M. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI. Eur J Nucl Med Mol Imaging. 2021;48(6):1795–805.

Article  CAS  PubMed  Google Scholar 

Han C, Ma S, Liu X, Liu Y, Li C, Zhang Y, Zhang X, Wang X. Radiomics models based on apparent diffusion coefficient maps for the prediction of High-Grade prostate Cancer at radical prostatectomy: comparison with preoperative biopsy. J Magn Reson Imaging. 2021;54(6):1892–901.

Article  PubMed  Google Scholar 

Bleker J, Kwee TC, Dierckx RAJO, de Jong IJ, Huisman H, Yakar D. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol. 2020;30(3):1313–24.

Article  PubMed  Google Scholar 

Woźnicki P, Westhoff N, Huber T, Riffel P, Froelich MF, Gresser E, von Hardenberg J, Mühlberg A, Michel MS, Schoenberg SO, Nörenberg D. Multiparametric MRI for prostate Cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters. Cancers (Basel). 2020;12(7):1767.

Article  PubMed  Google Scholar 

Qi Y, Zhang S, Wei J, Zhang G, Lei J, Yan W, Xiao Y, Yan S, Xue H, Feng F, Sun H, Tian J, Jin Z. Multiparametric MRI-Based radiomics for prostate Cancer screening with PSA in 4–10 Ng/mL to reduce unnecessary biopsies. J Magn Reson Imaging. 2020;51(6):1890–9.

Article  PubMed  Google Scholar 

Bourbonne V, Fournier G, Vallières M, Lucia F, Doucet L, Tissot V, Cuvelier G, Hue S, Le Penn Du H, Perdriel L, Bertrand N, Staroz F, Visvikis D, Pradier O, Hatt M, Schick U. External validation of an MRI-Derived radiomics model to predict biochemical recurrence after surgery for High-Risk prostate Cancer. Cancers (Basel). 2020;12(4):814.

Article  CAS  PubMed  Google Scholar 

Sushentsev N, Rundo L, Blyuss O, Gnanapragasam VJ, Sala E, Barrett T. MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance. Sci Rep. 2021;11(1):12917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang GM, Han YQ, Wei JW, Qi YF, Gu DS, Lei J, Yan WG, Xiao Y, Xue HD, Feng F, Sun H, Jin ZY, Tian J. Radiomics based on MRI as a biomarker to guide therapy by predicting upgrading of prostate Cancer from biopsy to radical prostatectomy. J Magn Reson Imaging. 2020;52(4):1239–48.

Article  PubMed  Google Scholar 

Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol. 2016;11(1):148.

Article  PubMed  PubMed Central  Google Scholar 

Latonen L, Afyounian E, Jylhä A, Nättinen J, Aapola U, Annala M, Kivinummi KK, Tammela TTL, Beuerman RW, Uusitalo H, Nykter M, Visakorpi T. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat Commun. 2018;9(1):1176.

Article  PubMed  PubMed Central  Google Scholar 

Farolfi A, Hadaschik B, Hamdy FC, Herrmann K, Hofman MS, Murphy DG, Ost P, Padhani AR, Fanti S. Positron emission tomography and Whole-body magnetic resonance imaging for Metastasis-directed therapy in Hormone-sensitive oligometastatic prostate Cancer after primary radical treatment: A systematic review. Eur Urol Oncol. 2021;4(5):714–30.

Article  PubMed  Google Scholar 

Fu Y, Jung AW, Torne RV, Gonzalez S, Vöhringer H, Shmatko A, Yates LR, Jimenez-Linan M, Moore L, Gerstung M. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Cancer. 2020;1(8):800–10.

Article  CAS  PubMed  Google Scholar 

Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, Manceron P, Toldo S, Zaslavskiy M, Le Stang N, Girard N, Elemento O, Nicholson AG, Blay JY, Galateau-Sallé F, Wainrib G, Clozel T. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med. 2019;25(10):1519–25.

Article  CAS  PubMed  Google Scholar 

Diao JA, Wang JK, Chui WF, Mountain V, Gullapally SC, Srinivasan R, Mitchell RN, Glass B, Hoffman S, Rao SK, Maheshwari C, Lahiri A, Prakash A, McLoughlin R, Kerner JK, Resnick MB, Montalto MC, Khosla A, Wapinski IN, Beck AH, Elliott HL, Taylor-Weiner A. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat Commun. 2021;12(1):1613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W, Cope W, Dariush A, Dawson SJ, Abraham JE, Dunn J, Hiller L, Thomas J, Cameron DA, Bartlett JMS, Hayward L, Pharoah PD, Markowetz F, Rueda OM, Earl HM, Caldas C. Multi-omic machine learning predictor of breast cancer therapy response. Nature. 2022;601(7894):623–9.

Article  CAS  PubMed  Google Scholar 

Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer. 2022;22(2):114–26.

Article  CAS  PubMed  Google Scholar 

Macenko M et al. A method for normalizing histology slides for quantitative analysis, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 2009, pp. 1107–1110.

Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36(11):1–13.

Article  Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.

Friedman JHG. Function approximation: A gradient boosting machine. Ann Stat. 2001;29(5):1189–232.

Article 

Comments (0)

No login
gif