Safety and efficacy investigation of carnosine, an endogenous dipeptide against hypobaric hypoxia induced muscle protein loss

Agrawal A, Rathor R, Suryakumar G (2017) Oxidative protein modification alters proteostasis under acute hypobaric hypoxia in skeletal muscles: a comprehensive in vivo study. Cell Stress Chaperones 22(3):429–443. https://doi.org/10.1007/s12192-017-0795-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agrawal A, Rathor R, Kumar R et al (2018) Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy. PLoS ONE 13(9):e0204283. https://doi.org/10.1371/journal.pone.0204283

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agrawal A, Rathor R, Kumar R, Suryakumar G, Singh SN, Kumar B (2020) Redox modification of ryanodine receptor contributes to impaired Ca2+ homeostasis and exacerbates muscle atrophy under high altitude. Free Radic Biol Med S0891–5849(20):31238–31237. https://doi.org/10.1016/j.freeradbiomed.2020.09.001

Article  CAS  Google Scholar 

Agrawal A, Rathor R, Kumar R, Singh SN, Kumar B, Suryakumar G (2022) Endogenous dipeptide-carnosine supplementation ameliorates hypobaric hypoxia-induced skeletal muscle loss via attenuating endoplasmic reticulum stress response and maintaining proteostasis. IUBMB Life 74(1):101–116. https://doi.org/10.1002/iub.2539

Article  CAS  PubMed  Google Scholar 

Antonio J, Pereira F, Curtis J, Rojas J, Evans C (2024) The top 5 can’t-miss sport supplements. Nutrients 16(19):3247. https://doi.org/10.3390/nu16193247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arifin WN, Zahiruddin WM (2017) Sample size calculation in animal studies using resource equation approach. Malays J Med Sci 24(5):101–105

Article  PubMed  PubMed Central  Google Scholar 

Aujla RS, Patel R (2022) Creatine Phosphokinase. StatPearls Publishing, Treasure Island

Google Scholar 

Batrukova MA, Rubtsov AM (1997) Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. BBA Biomembranes 1324:142–150

Article  CAS  PubMed  Google Scholar 

Bermúdez ML, Seroogy KB, Genter MB (2019) Evaluation of carnosine intervention in the Thy1-aSyn mouse model of Parkinson’s disease. Neuroscience 411:270–278. https://doi.org/10.1016/j.neuroscience.2019.05.026

Article  CAS  PubMed  Google Scholar 

Beuerle JR, Azzazy HM, Styba G, Duh SH, Christenson RH (2000) Characteristics of myoglobin, carbonic anhydrase III and the myoglobin/carbonic anhydrase III ratio in trauma, exercise, and myocardial infarction patients. Clin Chim Acta 294:115–128

Article  CAS  PubMed  Google Scholar 

Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82(1):209–230

Article  PubMed  Google Scholar 

Cathcart R, Schwiers E, Ames BN (1983) Detection of pico mole levels of hyderoperoxides using fluorescent dichlorofluoroscein assay. Anal Biochem 134:111–116. https://doi.org/10.1016/0003-2697(83)90270-1

Article  CAS  PubMed  Google Scholar 

Chaudhary P, Suryakumar G, Prasad R et al (2012) Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains. Mol Cell Biochem 364(1–2):101–113. https://doi.org/10.1007/s11010-011-1210-x

Article  CAS  PubMed  Google Scholar 

Chomczynski P, Sacchi N (1987) Single method of RNA isolation by acid guanidinum thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

Article  CAS  PubMed  Google Scholar 

Diniz FC, Hipkiss AR, Ferreira GC (2022) The potential use of carnosine in diabetes and other afflictions reported in long COVID patients. Front Neurosci 16:898735. https://doi.org/10.3389/fnins.2022.898735

Article  PubMed  PubMed Central  Google Scholar 

Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K (2021) Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteom 18(12):1073–1086. https://doi.org/10.1080/14789450.2021.2017776

Article  CAS  Google Scholar 

Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K (2021) Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 18(12):1073–1086. https://doi.org/10.1080/14789450.2021.2017776

Article  CAS  PubMed  Google Scholar 

Duka T, Anderson SM, Collins Z, Raghanti MA, Ely JJ, Hof PR, Wildman DE, Goodman M, Grossman LI, Sherwood CC (2014) Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution. Brain Behav Evol 83(3):216–230. https://doi.org/10.1159/000358581

Article  PubMed  Google Scholar 

Dunnett M, Harris R (1999) Influence of oral beta-alanine and L-histidine supplementation on the carnosine content of the gluteus medius. Equine Vet J 30:499–504

Article  Google Scholar 

Dutka TL, Lamb GD (2004) Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil 25:203–213

Article  CAS  PubMed  Google Scholar 

Edwards LM, Murray AJ, Tyler DJ, Kemp GJ, Holloway CJ, Robbins PA et al (2010) The effect of high-altitude on human skeletal muscle energetics: 31P-MRS results from the Caudwell Xtreme everest expedition. PLoS ONE 5(5):e10681. https://doi.org/10.1371/journal.pone.0010681

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu F, Nie J, Tong TK (2009) Serum cardiac troponin T in adolescent runners: effects of exercise intensity and duration. Int J Sports Med 30:168–172

Article  CAS  PubMed  Google Scholar 

Gardner ML, Illingworth KM, Kelleher J, Wood D (1991) Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol 439:411–422

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaston A-F, Peiro AM, Hapkova I, Durand F (2019) Exploring physiological parameters in ski mountaineering during world cup races. 40X Int J Perform Anal Sport 19:275–288

Article  Google Scholar 

Gomes AV, Potter JD, Szczesna-Cordary D (2002) The role of troponins in muscle contraction. IUBMB Life 54(6):323–333. https://doi.org/10.1080/15216540216037

Article  CAS  PubMed  Google Scholar 

Hipkiss A, Brownson C, Bertani M, Ruiz E, Ferro A (2002) Reaction of carnosine with aged proteins: another protective process? Acad Sci 959:285–294

Article  CAS  Google Scholar 

Jaiswal N, Gavin M, Loro E, Sostre-Colón J, Roberson PA, Uehara K, Rivera-Fuentes N, Neinast M, Arany Z, Kimball SR, Khurana TS, Titchenell PM (2022) AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology. J Cachex Sarcopenia Muscle 13(1):495–514. https://doi.org/10.1002/jcsm.12846

Article  Google Scholar 

Kilkenny C, Browne WJ, Cuthill IC et al (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:1–5. https://doi.org/10.1371/journal.pbio.1000412

Article  CAS  Google Scholar 

Klein R, Nagy O, Tóthová C, Chovanová F (2020) Clinical and diagnostic significance of lactate dehydrogenase and its isoenzymes in animals. Vet Med Int 2020(15):5346483. https://doi.org/10.1155/2020/5346483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavallaz JDFD, Prepoudis A, Wendebourg MJ, Kesenheimer E, Kyburz D, Daikeler T, Haaf P, Wanschitz J, Löscher WN, Schreiner B, Katan M, Jung HH, Maurer B, Hammerer-Lercher A, Mayr A, Gualandro DM, Acket A, Puelacher C, Boeddinghaus J, Nestelberger T, Lopez-Ayala P, Glarner N, Shrestha S, Manka R, Gawinecka J, Piscuoglio S, Gallon J, Wiedemann S, Sinnreich M, Mueller C; BASEL XII Investigators (2022) Skeletal muscle disorders: a noncardiac source of cardiac troponin T. circulation. 145(24):1764–1779. https://doi.org/10.1161/CIRCULATIONAHA.121.058489

Leite MO, Silva TMA, Machado M (2021) IGF-1-PI3K-Akt-mTOR and myostatin-SMAD3 pathways signaling for muscle hypertophy. J Endocrinol Thyroid Res 6(3):555689. https://doi.org/10.19080/JETR.2021.06.555689

Article  Google Scho

Comments (0)

No login
gif