Abdel-Aziz SM, Aeron A, Kahil TA (2016) Health benefits and possible risks of herbal medicine. In: Garg N, Abdel-Aziz SM, Aeron A (eds) Microbes in food and health. Springer, Berlin, pp 97–116. https://doi.org/10.1007/978-3-319-25277-3_6
Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52(5):2522–2529. https://doi.org/10.1007/s13197-014-1396-5
Article CAS PubMed Google Scholar
Adedapo A, Ogunmiluyi I (2020) The use of natural products in the management of diabetes: the current trends. J Drug Deliv Therap 10(1):153–162. https://doi.org/10.22270/jddt.v10i1.3839
Adetunji OA, Olugbami JO, Adegoke AM, Gbadegesin MA, Odunola OA (2021) Reno-hepatoprotective and antidiabetic properties of methanol leaf extract of Laportea Aestuans in wistar rats. J Evid Based Integr Med. https://doi.org/10.1177/2515690X211017464
Article PubMed PubMed Central Google Scholar
Ahmad Khan MS, Ahmad I (2019). Herbal medicine. In: New look to phytomedicine. Elsevier, Amsterdam, pp 3–13. https://doi.org/10.1016/B978-0-12-814619-4.00001-X
Ahmadieh H, Azar ST (2014) Liver disease and diabetes: association, pathophysiology, and management. Diabetes Res Clin Pract 104(1):53–62. https://doi.org/10.1016/j.diabres.2014.01.003
Article CAS PubMed Google Scholar
Ajaiyeoba EO, Sonibare MA, Elufioye TO, Ogbole OO, Olayemi JO, Adeyemi AA, Ajayi TO, Aladesanmi JA, Moody JO (2015) Pharmacognosy Practical Manual. Department of Pharmacognosy, University of Ibadan, Ibadan
Ajayi TO, Attah AF, Bafor EE, Tokede GO (2020) Ethnobotanical survey of medicinal plants used in the management of diabetes in Ibadan North-East and Ibadan South-East, Oyo State, Nigeria [Preprint]. (in review). https://doi.org/10.21203/rs.3.rs-41424/v1
Alam S, Hasan MdK, Neaz S, Hussain N, Hossain MdF, Rahman T (2021) Diabetes mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis. Complic Compr Manag Diabetol 2(2):36–50. https://doi.org/10.3390/diabetology2020004
Alhadramy MS (2016) Diabetes and oral therapies: a review of oral therapies for diabetes mellitus. J Taibah Univ Med Sci 11(4):317–329. https://doi.org/10.1016/j.jtumed.2016.02.001
Apostolidis E, Kwon Y-I, Shetty K (2007) Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov Food Sci Emerg Technol 8(1):46–54. https://doi.org/10.1016/j.ifset.2006.06.001
Ashidi JS, Lawal OI (2017) Analgesic and anti-inflammatory potential of the ethanol extract of leaves of Laportea aestuans (L.) Chew in albino wistar rats. Afr J Sci Nat 5:46–54
Assadi S, Shafiee SM, Erfani M, Akmali M (2021) Antioxidative and antidiabetic effects of Capparis spinosa fruit extract on high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats. Biomed Pharmacother 138:111391. https://doi.org/10.1016/j.biopha.2021.111391
Article CAS PubMed Google Scholar
Bansal N (2015) Prediabetes diagnosis and treatment: a review. World J Diabetes 6(2):296. https://doi.org/10.4239/wjd.v6.i2.296
Article PubMed PubMed Central Google Scholar
Chatterjee S, Davies MJ (2015) Current management of diabetes mellitus and future directions in care. Postgrad Med J 91(1081):612–621. https://doi.org/10.1136/postgradmedj-2014-133200
Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390. https://doi.org/10.1038/s41581-020-0278-5
Article PubMed PubMed Central Google Scholar
Coronado-Olano J, Repo-Carrasco-Valencia R, Reategui O, Toscano E, Valdez E, Zimic M, Best I (2021) Inhibitory activity against α-amylase and α-glucosidase by phenolic compounds of guinoa (Chenopodium quinoa Willd.) and cañihua (Chenopodium pallidicaule Aellen) from the Andean Region of Peru. Pharmacogn J 13(4):896–901. https://doi.org/10.5530/pj.2021.13.115
Czech MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23(7):804–814. https://doi.org/10.1038/nm.4350
Article CAS PubMed PubMed Central Google Scholar
Echouffo-Tcheugui JB, Selvin E (2021) Prediabetes and what it means: the epidemiological evidence. Annu Rev Public Health 42(1):59–77. https://doi.org/10.1146/annurev-publhealth-090419-102644
Article PubMed PubMed Central Google Scholar
Emeka OC, Charity O-N, Augustine U (2022) Evaluation of biologically active constituents of ethanol extracts of H. verticillata leave, L. aestuans leave and seeds of L. aestuans. J Med Plants Stud 10(2):196–203. https://doi.org/10.22271/plants.2022.v10.i2c.1409
Essiett UA, Edet NI, Bala DN (2011) Phytochemical and physicochemical analysis of the leaves of Laportea aestuans (Linn.) Chew and Laportea ovalifolia (Schumach.) Chew (male and female). Asian J Plant Sci Res 1(2):35–42
Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766
Article CAS PubMed Google Scholar
Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151. https://doi.org/10.1016/0009-8981(91)90067-M
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8
Article CAS PubMed Google Scholar
Hirano T (2018) Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb 25(9):771–782. https://doi.org/10.5551/jat.RV17023
Article CAS PubMed PubMed Central Google Scholar
Jacob B, Narendhirakannan RT (2019) Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech 9(1):4. https://doi.org/10.1007/s13205-018-1528-0
Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169. https://doi.org/10.1159/000136485
Article CAS PubMed Google Scholar
Karamanou M, Protogerou A, Tsoucalas G, Androutsos G, Poulakou-Rebelakou E (2016) Milestones in the history of diabetes mellitus: the main contributors. World J Diabetes 7(1):1. https://doi.org/10.4239/wjd.v7.i1.1
Article PubMed PubMed Central Google Scholar
Khneizer G, Rizvi S, Gawrieh S (2020) Non-alcoholic fatty liver disease and diabetes mellitus. In: Islam MdS (ed) Diabetes: from research to clinical practice, vol 1307. Springer, Berlin, pp 417–440. https://doi.org/10.1007/5584_2020_532
Kurek JM, Król E, Krejpcio Z (2020) Steviol glycosides supplementation affects lipid metabolism in high-fat fed STZ-induced diabetic rats. Nutrients 13(1):112. https://doi.org/10.3390/nu13010112
Article CAS PubMed PubMed Central Google Scholar
Lee C, Lui DT, Lam KS (2022) Non-alcoholic fatty liver disease and type 2 diabetes: an update. J Diabetes Investig 13(6):930–940. https://doi.org/10.1111/jdi.13756
Article PubMed PubMed Central Google Scholar
Mamo Y, Bekele F, Nigussie T, Zewudie A (2019) Determinants of poor glycemic control among adult patients with type 2 diabetes mellitus in Jimma University Medical Center, Jimma zone, south west Ethiopia: a case control study. BMC Endocr Disord 19(91):1–11
Marčetić M, Arsenijević J (2023) Antioxidant activity of plant secondary metabolites. Arhiv Za Farmaciju 73(4):264–277. https://doi.org/10.5937/arhfarm73-45560
Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175. https://doi.org/10.1016/S0021-9258(19)45228-9
Article CAS PubMed Google Scholar
Mohamed J, Nafizah AN, Zariyantey AH, Budin BS (2016) Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J 16(2):e132–e141. https://doi.org/10.18295/squmj.2016.16.02.002
Comments (0)