Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American heart association/american college of cardiology joint committee on clinical practice guidelines. Circulation. 2022;146:e334–482.
Song P, He Y, Adeloye D, Zhu Y, Ye X, Yi Q, et al. The global and regional prevalence of abdominal aortic aneurysms: A systematic review and modeling analysis. Ann Surg. 2023;277:912–9.
Gunnarsson K, Wanhainen A, Björck M, Djavani-Gidlund K, Mani K. Nationwide study of ruptured abdominal aortic aneurysms during Twenty years (1994–2013). Ann Surg. 2021;274:e160–6.
Ulug P, Powell JT, Martinez MA-M, Ballard DJ, Filardo G. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane Database Syst Rev. 2020;7:CD001835.
Sweeting MJ, Thompson SG, Brown LC, Powell JT. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg. 2012;99:655–65.
Article CAS PubMed Google Scholar
Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol. 2019;16:225–42.
Gao J, Cao H, Hu G, Wu Y, Xu Y, Cui H, et al. The mechanism and therapy of aortic aneurysms. Sig Transduct Target Ther. 2023;8:55.
Davis FM, Tsoi LC, Ma F, Wasikowski R, Moore BB, Kunkel SL, et al. Single-cell transcriptomics reveals dynamic role of smooth muscle cells and enrichment of immune cell subsets in human abdominal aortic aneurysms. Ann Surg. 2022;276:511–21.
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J et al. Single-Cell RNA sequencing deconstructs the distribution of immune cells within abdominal aortic aneurysms in mice. ATVB. 2024;ATVBAHA.124.321129.
Yang H, Zhou T, Stranz A, DeRoo E, Liu B. Single-Cell RNA sequencing reveals heterogeneity of vascular cells in early stage murine abdominal aortic Aneurysm—Brief report. ATVB. 2021;41:1158–66.
Le S, Wu J, Liu H, Du Y, Wang D, Luo J, et al. Single-cell RNA sequencing identifies interferon-inducible monocytes/macrophages as a cellular target for mitigating the progression of abdominal aortic aneurysm and rupture risk. Cardiovascular Res. 2024;120:1351–64.
Bontekoe J, Liu B. Single-cell RNA sequencing provides novel insights to pathologic pathways in abdominal aortic aneurysm. Front Cardiovasc Med. 2023;10:1172080.
Article CAS PubMed PubMed Central Google Scholar
Salarian M, Ghim M, Toczek J, Han J, Weiss D, Spronck B, et al. Homeostatic, Non-Canonical role of macrophage elastase in vascular integrity. Circul Res. 2023;132:432–48.
Qi Y, Chen L, Ding S, Shen X, Wang Z, Qi H, et al. Neutrophil extracellular trap-induced ferroptosis promotes abdominal aortic aneurysm formation via SLC25A11-mediated depletion of mitochondrial glutathione. Free Radic Biol Med. 2024;221:215–24.
Article CAS PubMed Google Scholar
Peshkova IO, Aghayev T, Fatkhullina AR, Makhov P, Titerina EK, Eguchi S, et al. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat Commun. 2019;10:5046.
Article PubMed PubMed Central Google Scholar
Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y, Sano M, et al. Tet2-Mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71:875–86.
Article CAS PubMed PubMed Central Google Scholar
Bahrar H, Bekkering S, Stienstra R, Netea MG, Riksen NP. Innate immune memory in cardiometabolic disease. Cardiovascular Res. 2024;119:2774–86.
Wang Z, Cheng J, Wang Y, Yuan H, Bi S, Wang S, et al. Macrophage ILF3 promotes abdominal aortic aneurysm by inducing inflammatory imbalance in male mice. Nat Commun. 2024;15:7249.
Article CAS PubMed PubMed Central Google Scholar
Hof A, Geißen S, Singgih K, Mollenhauer M, Winkels H, Benzing T, et al. Myeloid leukocytes’ diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res Cardiol. 2022;117:38.
Article CAS PubMed PubMed Central Google Scholar
Liu C-L, Liu X, Zhang Y, Liu J, Yang C, Luo S, et al. Eosinophils protect mice from Angiotensin-II Perfusion–Induced abdominal aortic aneurysm. Circul Res. 2021;128:188–202.
Gäbel G, Northoff BH, Balboa A, Becirovic- Agic M, Petri M, Busch A, et al. Parallel murine and human aortic wall genomics reveals metabolic reprogramming as key driver of abdominal aortic aneurysm progression. JAHA. 2021;10:e020231.
Article PubMed PubMed Central Google Scholar
Tsuruda T, Hatakeyama K, Nagamachi S, Sekita Y, Sakamoto S, Endo GJ, et al. Inhibition of development of abdominal aortic aneurysm by Glycolysis restriction. ATVB. 2012;32:1410–7.
Zekavat SM, Viana-Huete V, Matesanz N, Jorshery SD, Zuriaga MA, Uddin MM, et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res. 2023;2:144–58.
Article CAS PubMed PubMed Central Google Scholar
Yokokawa T, Misaka T, Kimishima Y, Wada K, Minakawa K, Sugimoto K, et al. Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms. Haematol. 2021;106:1910–22.
Golledge J, Lu HS, Curci JA. Small AAAs: recommendations for rodent model research for the identification of novel therapeutics. ATVB. 2024;44:1467–73.
Cheng S, Liu Y, Jing Y, Jiang B, Wang D, Chu X, et al. Identification of key monocytes/macrophages related gene set of the early-stage abdominal aortic aneurysm by integrated bioinformatics analysis and experimental validation. Front Cardiovasc Med. 2022;9:950961.
Article CAS PubMed PubMed Central Google Scholar
Cagli K, Tok D, Turak O, Gunertem E, Yayla C, Lafci G, et al. Monocyte Count-To-High-Density Lipoprotein-Cholesterol ratio is associated with abdominal aortic aneurysm size. Biomark Med. 2016;10:1039–47.
Article CAS PubMed Google Scholar
Wong KL, Tai JJ-Y, Wong W-C, Han H, Sem X, Yeap W-H, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–31.
Article CAS PubMed Google Scholar
Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.
Article PubMed PubMed Central Google Scholar
Klopf J, Zagrapan B, Brandau A, Lechenauer P, Candussi CJ, Rossi P, et al. Circulating monocyte populations as biomarker for abdominal aortic aneurysms: a single-center retrospective cohort study. Front Immunol. 2024;15:1418625.
Article CAS PubMed PubMed Central Google Scholar
Mellak S, Ait-Oufella H, Esposito B, Loyer X, Poirier M, Tedder TF, et al. Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe –/– mice. ATVB. 2015;35:378–88.
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, et al. M1/M2 macrophages and their overlaps – myth or reality? Clin Sci. 2023;137:1067–93.
Cai D, Sun C, Murashita T, Que X, Chen S-Y. ADAR1 Non-Editing function in macrophage activation and abdominal aortic aneurysm. Circ Res. 2023;132:e78–93.
Comments (0)