Myeloid Cells in Abdominal Aortic Aneurysm

Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American heart association/american college of cardiology joint committee on clinical practice guidelines. Circulation. 2022;146:e334–482.

Article  PubMed  Google Scholar 

Song P, He Y, Adeloye D, Zhu Y, Ye X, Yi Q, et al. The global and regional prevalence of abdominal aortic aneurysms: A systematic review and modeling analysis. Ann Surg. 2023;277:912–9.

Article  PubMed  Google Scholar 

Gunnarsson K, Wanhainen A, Björck M, Djavani-Gidlund K, Mani K. Nationwide study of ruptured abdominal aortic aneurysms during Twenty years (1994–2013). Ann Surg. 2021;274:e160–6.

Article  PubMed  Google Scholar 

Ulug P, Powell JT, Martinez MA-M, Ballard DJ, Filardo G. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane Database Syst Rev. 2020;7:CD001835.

PubMed  Google Scholar 

Sweeting MJ, Thompson SG, Brown LC, Powell JT. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg. 2012;99:655–65.

Article  CAS  PubMed  Google Scholar 

Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol. 2019;16:225–42.

Article  PubMed  Google Scholar 

Gao J, Cao H, Hu G, Wu Y, Xu Y, Cui H, et al. The mechanism and therapy of aortic aneurysms. Sig Transduct Target Ther. 2023;8:55.

Article  Google Scholar 

Davis FM, Tsoi LC, Ma F, Wasikowski R, Moore BB, Kunkel SL, et al. Single-cell transcriptomics reveals dynamic role of smooth muscle cells and enrichment of immune cell subsets in human abdominal aortic aneurysms. Ann Surg. 2022;276:511–21.

Article  PubMed  Google Scholar 

Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J et al. Single-Cell RNA sequencing deconstructs the distribution of immune cells within abdominal aortic aneurysms in mice. ATVB. 2024;ATVBAHA.124.321129.

Yang H, Zhou T, Stranz A, DeRoo E, Liu B. Single-Cell RNA sequencing reveals heterogeneity of vascular cells in early stage murine abdominal aortic Aneurysm—Brief report. ATVB. 2021;41:1158–66.

Article  CAS  Google Scholar 

Le S, Wu J, Liu H, Du Y, Wang D, Luo J, et al. Single-cell RNA sequencing identifies interferon-inducible monocytes/macrophages as a cellular target for mitigating the progression of abdominal aortic aneurysm and rupture risk. Cardiovascular Res. 2024;120:1351–64.

Article  CAS  Google Scholar 

Bontekoe J, Liu B. Single-cell RNA sequencing provides novel insights to pathologic pathways in abdominal aortic aneurysm. Front Cardiovasc Med. 2023;10:1172080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salarian M, Ghim M, Toczek J, Han J, Weiss D, Spronck B, et al. Homeostatic, Non-Canonical role of macrophage elastase in vascular integrity. Circul Res. 2023;132:432–48.

Article  CAS  Google Scholar 

Qi Y, Chen L, Ding S, Shen X, Wang Z, Qi H, et al. Neutrophil extracellular trap-induced ferroptosis promotes abdominal aortic aneurysm formation via SLC25A11-mediated depletion of mitochondrial glutathione. Free Radic Biol Med. 2024;221:215–24.

Article  CAS  PubMed  Google Scholar 

Peshkova IO, Aghayev T, Fatkhullina AR, Makhov P, Titerina EK, Eguchi S, et al. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat Commun. 2019;10:5046.

Article  PubMed  PubMed Central  Google Scholar 

Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y, Sano M, et al. Tet2-Mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71:875–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahrar H, Bekkering S, Stienstra R, Netea MG, Riksen NP. Innate immune memory in cardiometabolic disease. Cardiovascular Res. 2024;119:2774–86.

Article  Google Scholar 

Wang Z, Cheng J, Wang Y, Yuan H, Bi S, Wang S, et al. Macrophage ILF3 promotes abdominal aortic aneurysm by inducing inflammatory imbalance in male mice. Nat Commun. 2024;15:7249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hof A, Geißen S, Singgih K, Mollenhauer M, Winkels H, Benzing T, et al. Myeloid leukocytes’ diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res Cardiol. 2022;117:38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C-L, Liu X, Zhang Y, Liu J, Yang C, Luo S, et al. Eosinophils protect mice from Angiotensin-II Perfusion–Induced abdominal aortic aneurysm. Circul Res. 2021;128:188–202.

Article  CAS  Google Scholar 

Gäbel G, Northoff BH, Balboa A, Becirovic- Agic M, Petri M, Busch A, et al. Parallel murine and human aortic wall genomics reveals metabolic reprogramming as key driver of abdominal aortic aneurysm progression. JAHA. 2021;10:e020231.

Article  PubMed  PubMed Central  Google Scholar 

Tsuruda T, Hatakeyama K, Nagamachi S, Sekita Y, Sakamoto S, Endo GJ, et al. Inhibition of development of abdominal aortic aneurysm by Glycolysis restriction. ATVB. 2012;32:1410–7.

Article  CAS  Google Scholar 

Zekavat SM, Viana-Huete V, Matesanz N, Jorshery SD, Zuriaga MA, Uddin MM, et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res. 2023;2:144–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yokokawa T, Misaka T, Kimishima Y, Wada K, Minakawa K, Sugimoto K, et al. Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms. Haematol. 2021;106:1910–22.

Article  CAS  Google Scholar 

Golledge J, Lu HS, Curci JA. Small AAAs: recommendations for rodent model research for the identification of novel therapeutics. ATVB. 2024;44:1467–73.

Article  CAS  Google Scholar 

Cheng S, Liu Y, Jing Y, Jiang B, Wang D, Chu X, et al. Identification of key monocytes/macrophages related gene set of the early-stage abdominal aortic aneurysm by integrated bioinformatics analysis and experimental validation. Front Cardiovasc Med. 2022;9:950961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cagli K, Tok D, Turak O, Gunertem E, Yayla C, Lafci G, et al. Monocyte Count-To-High-Density Lipoprotein-Cholesterol ratio is associated with abdominal aortic aneurysm size. Biomark Med. 2016;10:1039–47.

Article  CAS  PubMed  Google Scholar 

Wong KL, Tai JJ-Y, Wong W-C, Han H, Sem X, Yeap W-H, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–31.

Article  CAS  PubMed  Google Scholar 

Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.

Article  PubMed  PubMed Central  Google Scholar 

Klopf J, Zagrapan B, Brandau A, Lechenauer P, Candussi CJ, Rossi P, et al. Circulating monocyte populations as biomarker for abdominal aortic aneurysms: a single-center retrospective cohort study. Front Immunol. 2024;15:1418625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mellak S, Ait-Oufella H, Esposito B, Loyer X, Poirier M, Tedder TF, et al. Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe –/– mice. ATVB. 2015;35:378–88.

Article  CAS  Google Scholar 

Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, et al. M1/M2 macrophages and their overlaps – myth or reality? Clin Sci. 2023;137:1067–93.

Article  CAS  Google Scholar 

Cai D, Sun C, Murashita T, Que X, Chen S-Y. ADAR1 Non-Editing function in macrophage activation and abdominal aortic aneurysm. Circ Res. 2023;132:e78–93.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif